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Abstract 

This paper deals with the homogenization of the Stokes or Navier-Stokes equations in a domain 
containing periodically distributed obstacles, with a slip boundary condition (i.e., the normal component 
of the velocity is equal to zero, while the tangential velocity is proportional to the tangential component 
of the normal stress). We generalize our previous results (see [ 11) established in the case of a Dirichlet 
boundary condition; in particular, for a so-called critical size of the obstacles (equal to c 3  in the three- 
dimensional case, E being the inter-hole distance), we prove the convergence of the homogenization 
process to a Brinkman-type law. 

1. introduction 
In a recent article (see [ I ] )  we addressed the problem of the homogenization 

of the Stokes or Navier-Stokes equations, with a Dirichlet boundary condition, in 
open sets perforated with tiny holes. The present paper is devoted to the general- 
ization of that previous study to the case of a slip boundary condition (the normal 
component of the velocity is equal to zero, but the tangential component is pro- 
portional to the tangential component of the normal stress). Roughly speaking, all 
the results of [ 11 still hold true, including the construction of an extension of the 
pressure, and the three different limit regimes (Darcy, Brinkman, Stokes). In both 
cases the critical size of the holes (leading to the homogenized Brinkman-type law) 
is the same, but the matrix M which appears in the limit is different. From a 
mathematical view point this paper shows that the same type of results are obtained 
either if all the N components of the velocity are equal to zero on the boundary of 
the obstacles (Dirichlet boundary condition in [ l ] ) ,  or if the single normal com- 
ponent is equal to zero (slip boundary condition in the present case). From a 
physical view point it shows that the slowing effect of the obstacles is mainly due 
to the fact that the fluid does not penetrate them (zero normal component of the 
velocity), rather than to the fact that it sticks to the obstacles because of the viscosity 
(no-slip or Dirichlet boundary condition). Though the results of the present paper 
are similar to those of [ 11, the generalization of their proof is not trivial. Some new 
technical lemmas are required in order to carry out the machinery of [ l ] .  For 
example, the extension of the velocity is no longer obvious, and we construct it 
following an idea of C. Conca (see [ 1 l ] ) ,  D. Cioranescu and J. Saint Jean Paulin 
(see [ 10 I ) ,  and L. Tartar (see [ 27 ] ). Also, due to the presence of the symmetric 
stress tensor in the boundary condition, the variational formulation of the Stokes 
equations is different from that in [ 11, and its coercivity is proved through a Korn- 
type inequality. Besides recovering the results of [ 11 for the more restrictive case of 
a slip boundary condition, we present here a new result concerning the local problem 
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in the two-dimensional case. As already pointed out in [ 11, the 2-D case is completely 
different from the other ones. We complete our previous study [ 11 by introducing 
the precise form of the local problem in the plane. This yields a clearer proof of 
the paradoxical two-dimensional result which is linked to the well-known Stokes 
paradox and to the Finn-Smith paradox; see [13]. Finally, the exposition is here 
more simple (and less general) than in [ l ] ;  several technical lemmas are merely 
quoted, and we refer to [ 11 for their proof. 

We turn now to a brief survey of our main result. We represent solid obsta- 
cles in a fluid flow by holes in the fluid domain: Sle is obtained by removing 
from a given set 52, included in RN a collection of periodically distributed holes 
(Tf), s i s N ( r )  (their number N ( e )  is of order of C N ) .  Each hole TC is homothetic 
with ratio a, to the same model hole T.  The hole size a, is assumed to be much 
smaller than the inter-hole distance E (i.e., a,/& goes to zero as E does). For a given 
force f€ [ L 2 (  Q ) l N  and a constant positive viscosity p, denoting by u, the velocity, 
and by pe the pressure, the Stokes equations in 52, are 

We provide the Stokes equations with the so-called slip boundary condition 

on aa 

where the slip coefficient a is a positive constant. The first equation in (BC) expresses 
that the fluid does not flow through the obstacle TT. The second one is a balance 
relation between the tangential components of the velocity and the infinitesimal 
force exerted by the fluid on the obstacle. We define a ratio 6, between the size of 
the holes and the inter-hole distance 

If the limit of u, is strictly positive and finite, then the size of the holes is said to 
be critical. If the limit is zero (or infinite), then the size is larger (or smaller) than 
the critical one. These three different limits of 6, lead to three different homogenized 
limits for (St): a Darcy’s law, a Brinkman-type law, and the Stokes equations. More 
precisely, using the so-called energy method introduced by L. Tartar in [27] and 
adapted by D. Cioranescu and F. Murat in [ 91, we prove the following: 
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THEOREM 1 . 1 .  There exists an extension (E,u,, P,) of the unique solution ( u,, 

( i )  If limc+.ouc = +a, then (E,u,, P,) converges strongly to ( u ,  p )  in 
[ H ; ( Q ) l N  X [ L 2 ( Q ) / R ] ,  where(u,p)  isthe uniquesolution ofthestokes 
equations 

p,) of(S,) - (BC), with the followingproperties. 

V p - p A u =  f i n Q  1 on dR 

( I n  this case the holes are too small, and nothing happens when passing 
to the limit .) 

( i i )  If limc+,,ue = g > 0, then (E,u,, P,) converges weakly to ( u ,  p )  in 
[ H ; ( Q ) l N  X [ L 2 ( R ) / R ] ,  where(u,p)  istheuniquesolutionoftheBrink- 
man-type law 

i n 0  . 

Y V p - p A u + ~ M u =  f i n R  
IJ 

D . u  = 0 

u = 0  

i n Q  . 
on an 

(For this critical size of the holes, an additional term appears when passing 
to the limit .) 

( i i i )  If limc-.ouc = 0, then (E,zi,/u,2, P,) converges strongly to ( u ,  p )  in 
[L2(R) lN  X [ L 2 ( Q ) / R ] ,  where ( u ,  p )  is the unique solution of Darcy’s 
law 

M-‘ 
( f - V p )  i n R  

v . u  = 0 i n R  

u - n  = 0 on dQ 

(Thus,  i f the holes are too large, the Stokesflow degenerates to a Darcy 
jlow when passing to the limit .) 

The matrix M appearing in the Brinkman-type law and in the Darcy’s law is 
the same, and it depends only on the model hole T and on the slip coefficient a. 
Moreover, we can compute M thanks to the following 

THEOREM 1.2. In the homogenization ofthe Stokes equations (St), for any 
limit value of a,, the so-called local problem is 
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i n R N -  T 

i n R N -  T 

on dT 

where ek is the k-th unit basis vector in RN. For any dimension N ,  the matrix M is 
defined in terms of the drag force of the above Stokesflow, i.e., 

where n is the normal interior vector of dT. Furthermore it turns out that 

for N = 2, whatever the size and shape of the model hole T and the value of the 
slip coeficient a are, M is always equal to TId.  

All other possible scalings of the slip coefficient are examined in Section 3; they 
yield the same homogenized equations as before. We emphasize that the permeability 
tensor M-' in the above Darcy's law is completely different from that obtained by 
the two-scale expansions method when the holes size a, is exactly of order E (see 
[2], [15], [19], [25], [26]). However, in a forthcoming paper (see [4]), we shall 
prove that they coincide in the so-called low volume fraction limit. 

We conclude this introduction by refemng to C .  Conca in [ 1 11 and R. Lipton 
and M. Avellaneda in [ 201 for the homogenization of the Stokes equations with 
other types of mixed boundary conditions (different from our slip boundary con- 
dition). We also refer to [ 11 , [ 61, [ 18]? [ 2 l ]?  [ 231, and [ 241 for the derivation of 
Brinkman's law through homogenization of the Stokes equations with a Dirichlet 
boundary condition (see the introduction to [ 11 for a brief survey of these works). 
Finally we mention that in [ 7 ] A. Brillard has addressed a similar problem for the 
Laplacian with a mixed boundary condition. For a general introduction to the 
homogenization theory, one could see [ 5 1, [ 25 1, and the references therein. The 
results of the present paper have been announced in [ 31. 

Notation 

Throughout this paper, C denotes various real positive constants which never 
depend on c. The duality products between HA(Q)  and H - ' ( Q ) ,  and between 
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[HA( R ) l N  and [H- ’ (  Q ) ] ” ,  are both denoted by <, >H-I,H&Q). The canonical basis 
of RN is denoted by ( ek),  ( k (  N .  If u ( x )  is a vector-valued function from R N  to R N ,  
then 

0 The gradient of u is an N X N tensor: V u  = ( d u , / d ~ , ) ~  
0 We denote by e( u )  the N X N symmetric tensor defined by: e( u )  = (Vu  + 
0 The tensonal product of u by v (two vectors in R N )  is denoted by: u 0 u = 

0 The inner product of two N X N tensors A = (all)  and B = (b,,) is denoted 

N .  

v u )  = (au,/ax, + au,/ax,), s r , l s N .  

( u , q l  5 I , ]  i N .  

by: 

A : B = tr(‘AB) = C allbl,. 
I S I . j S N  

2. Formulation of the Problem 

Let R be a bounded, connected, open set in RN ( N  2 2), with Lipschitz boundary 
dR, R being locally located on one side of its boundary. Let c be a sequence of 
strictly positive reals which tends to zero. The set R is covered with a regular mesh 
of size 2c, each cell being a cube Pf, identical to ( -c, + c ) ~ .  At the center of each 
cube Pf entirely included in Q we make a hole Tf of size a,. Every hole T: is similar 
to the same model obstacle T rescaled to size a,. We assume that T is a smooth 
closed set, which contains a small open ball B, (with strictly positive radius r o ) ,  is 
strictly included in the unit open ball BI , and is such that ( BI - T )  is connected. 
Throughout the present paper, the main assumption is that the size of the holes a, 
is smaller than the inter-hole distance c, i.e., 

a, lim - = 0. 
e - r o  c 

In this section, we do not specify the relation between a, and c, but we define a 
ratio u, between a, and what will turn out to be the critical size in Section 3. 

To be precise, if the limit of uc, as c tends to zero, is strictly positive and finite, then 
the hole size is called critical. An elementary geometrical consideration gives the 
number of holes 

( 2 . 3 )  
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The open set 9, is obtained by removing from 9 all the holes ( T:)FLc) : 3, = 9 - 
U?Lc/ c. Because only the cells entirely included in fl are perforated, it follows that 
no hole meets the boundary dR. Thus 9, is also a bounded connected open set, 
with a smooth boundary d3,. This boundary is made of two disconnected parts a3 
and I?, 

N ( e )  

aflC = aQ u r, with r, = U aT;. 
I =  I 

(2.4) 

The flow of an incompressible viscous fluid in the domain Qt under the action of 
an exterior force f is described by the following Stokes equations (see Remark 3.4 
for the case of the Navier-Stokes equations) 

2, = -pJd + pe(u,) 

-U-Z, = f in 9, 

V.u,  = 0 in 9, 

where the stress 2, is an N X N symmetric tensor, the velocity u, is a vector in R N ,  
the pressure p, is a scalar, and the viscosity p of the fluid is a strictly positive 
constant. The Stokes equations (2.5) are endowed with the so-called “slip” boundary 
condition, which, loosely speaking, allows the fluid to slip on the obstacles, but not 
to go through them. More precisely, the normal component of the velocity is equal 
to zero on the obstacles, while the tangential velocity is proportional to the tangential 
component of the force exerted by the flow on each point of the obstacle’s boundary. 
As is well known in fluid mechanics, this force is equal to the opposite of the normal 
stress, i.e., to - Z,n, where n is the normal vector outward from the fluid domain. 
Denoting by (01,p) a sequence of strictly positive slip coefficients, the slip boundary 
condition on r, is 

In the end, as is well known in homogenization, the type of the homogeneous 
boundary condition on the “large” boundary d 9  is irrelevant; we therefore choose 
for simplicity a Dirichlet boundary condition 

(2.7 1 U, = 0 ond9.  

Regrouping (2.5) to (2.7), and taking into account that V.u ,  = 0 implies 0.2, = 
pAu,, we obtain the Stokes system under consideration in this paper 
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C U , ~ ,  = 2 - - . n  n - e(u, )n  on I', 1 ( 2  ) 
We emphasize that we shall never use the Dirichlet boundary condition on dQ in 
the technical lemmas (including Korn's and Poincark's inequality) which prove 
the coercivity of this Stokes system. Thus there is no loss of generality in our choice, 
and all the results of this paper are also valid for any other boundary condition on 
dQ (unless otherwise stated). 

Now, we define a set H, of admissible functions for the velocity 

(2.9) H , =  { v € [ H ' ( Q , ) J " / ~ ~ n = O o n I ' , a n d u = O o n d Q } .  

For a given force f €  [L2(Q)]" ,  the Stokes system (2.8) has the following variational 
formulation 

( Find (u , ,  p,) E H, X [ L 2 (  Q,)/R] such that 

1 for each u E H, 

for each q E L2( Q,)/R. 

Remark 2.1. In [ 11 the Stokes equations (2.5) were considered with a Dirichlet 
boundary condition on the obstacles 

(2.11) U ,  = 0 on dQ2,. 

In that case, because (2.1 1 ) does not involve the stress Z,, the Stokes system (2 .5) -  
(2.1 1 ) is equivalent to the following variational formulation 

[ Find ( u c , p e )  E [ H ; ( Q , ) l N  X [L2(Q,)/R] such that 

for each q E L2(Q,)/W. 
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The fundamental difference between (2.10) and (2.12) is the presence in (2.10) of 
the symmetric stress tensor in the boundary condition. As a consequence, in this 
paper there are two additional difficulties, beyond those of [ 11. First, the extension 
of the velocity is no longer obvious: in [ I ]  we extended it by zero in the holes, and 
this extension was continuous because of the Dirichlet boundary condition. Here, 
we need another kind of extension (see Lemma 2.2). Second, the coercivity of the 
variational formulation (2.10) (and thus a uniform estimate of the solution) is 
proved here through a Korn-type inequality (see Lemma 2.4). 

PROPOSITION 2.1. If the dip coefficient a(E is strictly positive, there exists a 
unique solution of the variational formulation (2.10), and thus of the equivalent 
Stokes system (2.8). (Moreover this result does not use the boundary condition 
on an). 

Proposition 2.1 is proved at the end of this section. Before that we prove several 
technical lemmas which will also be used in Sections 3 and 4. We recall that, in 
the present section, the hole size is not specified. First, let us introduce an extension 
operator for the velocity. 

LEMMA 2.2. There exists a continuous linear map E, from [Hi( Q , ) l N  into 
[H ' (Q) lN ,  such that, for each v E [ H ' ( Q , ) l N ,  we have 

( i )  E,v= v in R, 
(2.13) 

(ii) Ile(E,v)llLZ(a) Clle(v) llL2(nE) 

where C is a positive constant, which depends only on R and T ,  and not on c. 

converges strongly to e( v in L * ( R ) 1 N 2 .  

Furthermore, i f v  is defined in the whole R, i.e., v E [H'(R)]", then e(E,v) 

Proof: This lemma is classical in the homogenization literature (see Conca 
[ 111, Cioranescu and Saint Jean Paulin [ lo] ,  Tartar [ 27]), so we only sketch its 
proof. Each hole T: is included in a ball BP. of radius a,. We define the closed set 
W ( B 7 -  T : ) =  { v E [ H ' ( B p -  T:)]N/e(v)=OinBP.- 7'fJ.Itiseasytocheck 
that W (  BP. - Tf) is also equal to the set { v = Ax + b with ' A  = -A  1. Each v E 
[H' (BB.  - Tf)IN can be decomposed in 

v = vl  -t- v2 with v, E W (  BP. - T: )  and v2 E W (  BP. - T;)'. 

The function v i  is continuously extended in Tf by its linear value Ax + 6. Now, 
let F be any continuous extension from [Hi ( B ,  - T ) ]  to [ H I ( Bi )] N .  By rescaling 
F ,  we obtain an extension Ff operating on (BF - 7';). Finally we define the ex- 
tension E, by 

E,v = vi  + Ffv2 in each BY. 

E p  = v elsewhere in Q,. 
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Because 112)(IHl(B,) and \le(v)IILqBI) are two equivalent norms in W (  B l ) ’ ,  and be- 
cause the set B, - T is connected, we obtain the desired estimate (2.13) for E,. 
Before proving the last statement of Lemma 2.2, let us explain what it means: if v 
happens to be defined in the whole Q, then the extension E,v is indeed very “close” 
to v in the sense that the sequence e(E,v) converges strongly to e ( v )  in 
[L2(  Q ) ] ” ,  as E goes to zero. To see that, we write 

(2.14) 

where X, is the characteristic function of the set UyLc/ BF, which has the property 
that its measure tends to zero. Then, applying the Lebesgue theorem of dominated 
convergence, the right-hand side of (2.14) goes to zero with E ,  and the lemma is 
proved. 

The next lemma is about a trace result on the boundary I?,. 

LEMMA 2.3. There exists a constant C which does not depend on E such that, 
for any v E H 1 (  Q c ) ,  we have 

where ue is defined in ( 2 . 2 ) .  

Proof: Let v E D( fie). As the model hole T is included in the unit ball B, , 
each hole T f  is also included in a ball BP. of radius a,. In a first step, by using radial 
coordinates, we establish an estimate for the trace of v on dBp. In a second step, 
we take the trace of v on d T f ,  by using a simple trace lemma in Be - T f .  

Let B: be the ball of radius E with the same center as BP.. Let r be the distance 
between the center of Bf and a point x E Bf, and let e, be the associated unit radial 
vector. In Bf - BP. we have 

v ( x )  - v ( x  + ( a ,  - r)er)  = - [ x  + ( t  - r)e,] dt. s: :: 
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Hence 

Now, consider the following trace estimate in B,  - T ,  which obviously holds true 
because BI - T is a smooth connected set 

Recalling that a, 6 E -G uc, and combining the above estimate with (2.15), we obtain 

Summing (2.16) for i = 1 to N ( E )  leads to the desired result for any function 2, E 
D( Gc). By the density of D( fit) in HI(  Qz), the result holds true also in HI(  9) .  

The following lemma is concerned with a Korn-type inequality which allows 
us to prove the coercivity of the variational formulation (see the proof of Proposition 
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2.1 below) and to establish an a priori estimate for the velocity in Sections 3 
and 4. 

LEMMA 2.4. There exists a positive constant C, which depends only on Q and 
T ,  such that for each v E [ H 1 ( Q ) l N  

Proof: Let W (  0) be the closed set { v E [ H I (  Q ) l N / e (  V )  = 0 in Q } ,  which is 
also equal to { v = A x  + b with ' A  = -.1}. We denote by W (  Q)' its orthogonal 
complement with respect to the usual inner product in [ H ' ( Q ) l N .  Each v E 
[ H I (  Q ) l N  can be decomposed in 

v = V ,  + v2 with v1 E W ( Q )  and ~2 E W(Q) ' .  

It is well known that I IVV) I I~Z(~)  and Ile(V) I IL~(n)  are two equivalent norms in W(Q)' .  
Thus, for v2 E W(Q) ' ,  we have 

where the constant C depends only on Q. For v I  = ( A x  + b ) ,  with ' A  = - A ,  we 
compute 

Thus 

where the constant C does not depend on E ,  nor on uI  . Summing (2.17) and (2.18) 
leads to 
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Using the trace Lemma 2.3 we get 

(2.20) 

Because u2 belongs to the orthogonal complement of W (  R )  (which contains the 
constants), its average over R is equal to zero. Thus, the Poincarh-Wirtinger in- 
equality gives 

Thanks to (2.17) we deduce from (2.20) 

Plugging the above estimate in (2.19) concludes the proof. 

Remark 2.2. Lemmas 2.2, 2.3, and 2.4 do not use any assumptions on the 
type of the boundary condition on r, and on dR. In particular, the fact that the 
normal component of the velocity is equal to zero on r, is never used. Therefore 
those lemmas hold true in a more general context. However, Lemma 2.5 below 
relies upon our choice of the boundary condition on r, for the velocity. 

Now, we establish a Poincarh inequality in He,  which will be used in Sections 
3 and 4 for obtaining an a priori estimate for the velocity. 

LEMMA 2.5. There exists a positive constant C ,  which depends only on R, such 
that 

( i )  foreachuEIHl(R,)]N,sat is fv ingu.n = Oon r, 

(ii) for each u E [H'(R)lN, satisfying u - n  = 0 on I', 

Proof: The same arguments as in the previous Lemma 2.3 lead to an inequality 
similar to ( 2.15 ) 

(2.23) 
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Recall that the model hole T contains a ball B, (with radius ro > 0). Thus, the 
following PoincarC inequality holds for any v E [ H ’ ( B ,  - T ) ]  such that u.n = 
0 on dT 

Besides, we also have the following trace property for any E [HI ( B ,  - T ) ]  n: such 
that u . n  = 0 on dT 

Rescaling to size u, the two previous inequalities give 

for any u E [H’(BB.  - C)lN such that v .n  = 0 on dTf.  

Recalling that a, < c < a,, and combining ( 2 . 2 3 )  and ( 2 . 2 4 )  yields 

( 2 . 2 5 )  

From ( 2 . 2 5 ) ,  it is not difficult to obtain an equivalent inequality in P: - T:. Then, 
summing these inequalities for all cells Pf gives inequality (2 .2  1 ). In order to obtain 
(2 .22) ,  we just need to add to the above ingredients the following Poincark inequality 
in T ,  which holds for any v E [ H I (  T ) l N  such that v .n  = 0 on dT 

Rescaling it to size a,, and adding it to ( 2 . 2 5 )  gives (2.22). 

We recall, without proofs, two crucial, but rather technical, results from [ 1 J 
which are concerned with the extension of the pressure to the whole domain R. 
First, we define a restriction operator R, from [ H A ( Q ) l N  into [HA(Qe)JN.  Then, 
following an idea of L. Tartar (see [ 2 6 ] ) ,  we extend the gradient of the pressure, 
by duality in [ H - ’ ( R ) l N .  
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LEMMA 2.7. Let p,  be a function in L2(  fl,)/R. There exists a unique function 
P, E L2( Q)/R which satisfies the following equality 

Thanks to Lemma 2.6, P, is an extension clfp,, but in addition, because of the 
explicit construction of Re,  we obtain the precise value of P, in the holes 

where Cf is a control volume around the hole T: ,  defined as the part outside T;  of 
the ball of radius E with same center as T:. 

(See Section 2.2 and Proposition 3.4.10 in [l]  for proofs of Lemmas 2.6 
and 2.7.) 

Proof of Proposition 2.1: Thanks to the Korn-type inequality obtained in 
Lemma 2.4, the variational formulation (2.10) is coercive as soon as the slip coef- 
ficient a, is strictly positive 

with 

Then a variant of the Lax-Milgram theorem asserts that the variational formulation 
(2.10) has a unique solution (see, e.g., Girault Raviart [ 141). Finally, integrating 
by parts in (2.10) it is easy to show that a solution of (2.10) is also a weak solution 
of the Stokes system (2.8), and vice-versa. 

3. The Critical Scaling: Main Results 

In this section we prove the convergence of the homogenization process, when 
the hole size and the slip coefficient scale as follows: 

(3.1) 
lim a,u, = a 

where a and u are strictly positive constants. In the sequel, we will refer to those 
relations (3.1 ) as the critical scaling. For example, the latter relation in (3.1 ) is 
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satisfied by a hole size a, equal to CO~N1(N-2) for N 2 3, or exp{ - C O / E ~ }  for N = 
2 with C, > 0, and u given by u = 1 /C iN-*) l2  for N 2 3, or (T = CAI2 for N = 2. 
Using the lemmas of the first section, we obtain some a priori estimates for the 
solution of the variational formulation (2. lo), without making essential use of the 
Dirichlet boundary condition on the “large” boundary dR. 

PROPOSITION 3.1. Let (uc ,  p,) be the solution of(2.10), and (Et(ut), Pt) its 
extension in R, as defined in Lemmas 2.2 and 2.7. Then we have 

where the constant C depends only on R and T (and not on E ) .  

Proof: Introducing z, = u, in (2.10) leads to 

(3.2) 

Because u, E [ H’ ( R,)] and satisfies u; n = 0 on r,, Poincark’s inequality (2.2 1 ) 
(see Lemma 2.5) furnishes an upper bound of the right-hand side of (3.2) 

Thanks to the properties of the extension E, and to the scaling (3.1), the Korn- 
type inequality of Lemma 2.4 gives a lower bound of the left-hand side of (3.2) 

Finally, (3.3) and (3.4) yield 

and Poincark’s inequality (2.22) gives 
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Now we turn to an estimate for the pressure. Recall the definition (2.26) of the 
extension P, 

Introducing the Stokes equation, and integrating by parts, leads to 

Thanks to the properties of R, in Lemma 2.6, and to the previous estimate on the 
velocity u,, we obtain 

But a well-known lemma of functional analysis claims that, because of (3.5), P, 
belongs to L2( a), and we have 

Hence (3.5) gives the result. 

Because of the estimates in Proposition 3.1, one can extract a subsequence of 
extensions of the solutions, still denoted (E,u,, Pe)c,  and there exists some ( u ,  
p )  E [ H ; ( Q ) l N  X L 2 ( Q ) / R  such that (E,u,, P,) converges weakly to ( u ,  p )  in 
[HA(Q)]" X L 2 ( Q ) / R .  The problem is now to find which equation is satisfied by 
the limit (or homogenized) velocity u and pressure p .  For that purpose we use the 
energy method introduced by L. Tartar in [ 271 (see also F. Murat [ 221). The main 
idea is to compute in a unit cell the solutions of the "local" problem corresponding 
to the Stokes system (2.8). Then, by rescaling and extending by periodicity these 
local solutions, we construct so-called test functions (which can be interpreted as 
boundary layers around the holes Tf). After multiplication by a fixed smooth func- 
tion, they are introduced in the variational formulation. Finally, integrating by 
parts, we can pass to the limit in the variational formulation, and obtain the limit 
equation. The following lemma gives the so-called local problem. 

LEMMA 3.2. For N L 3 the local problem is 

Vqk - Awk = 0 
V - w k  = 0 

in R N  - T 

in R N  - T 
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There exists a unique solution of (3 .6)  such that IlqkllL2(RN-T) < +co and 
IlVWkIItZ(wN- T )  < +a. Moreover, denoting by Fk the drag.force applied on T ,  i.e., 
Fk = SaT (qkn - e( wk)n ) ,  where n is the interior normal vector of dT, we have 

e( w k )  -e (  w,) + a iT wk.  w,] for each i E [ 1; N ] .  
(3.7) Fk’e, = [L. 
For N = 2 the local problem is 

1 wk = (log r)ek at co. 

There exists a unique solution of (3 .8) ,  and still denoting by Fk = saT (qkn - 
e( wk)n) the drag force applied on T ,  we obtain a paradoxical result: whatever the 
size and the shape of T ,  and for any value of the slip coe8cient a, we have 

(See Section 5 for the proof.) 

DEFINITION 3.1. Let us define a matrix M by 

where Fk is the drag force introduced in the above Lemma 3.2. In the two-dimen- 
sional case, we always have M = TZd, but in the other cases ( N  B 3) ,  the matrix 
M is given by formula (3 .7)  and depends on the slip coefficient a. In any case, M 
is a symmetric positive definite matrix. 

Remark 3.1. There are two fundamental differences between the local problem 
in two and three (or more) dimensions. First, the profile of the velocity at infinity 
is uniform for the three (or more) dimensional case, while it is logarithmic for the 
two-dimensional case. Actually the celebrated Stokes paradox asserts that, in the 
plane, there is no solution of (3 .8)  which remains bounded at infinity, except the 
zero solution (see, e.g., Finn [12]). That is why there is logarithmic growth at 
infinity in (3 .8) .  Second, although in the three (or more) dimensional case the 
drag force Fk heavily depends both on the size and shape of the obstacle T ,  and on 
the slip coefficient a, in two dimensions it does not, and actually is equal to the 
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drag force obtained with a Dirichlet boundary condition. This paradox has already 
been pointed out by R. Finn and D. Smith in [ 131. 

PROPOSITION 3.3. With the h e b  of the local solutions (wk, qk)lsksN, we can 
construct test functions ( w i ,  q i ) ,  which satisfy the following properties: 

(i) qfr - 0 in L * ( Q ) / R  weakly. 
(ii) wi - ek in [ H 1 ( Q ) l N  weakly, and V - w ;  = 0 in Q. 

(iii) w i - n  = Oand(cu/a,)wi = 2[(dw; /dn) .n]n  - e ( w i ) n  on I',. 
(iv) Let p; = V q i  - Aw; E [ H-l(Q,)lN. Then p i  has compact support in 9,. 

Moreover, extending pfr by 0 in Q - Q6 we have 

1 
p i  + 7 Mek in [H-'(Q)lN strongly. 

U 

Remark 3.2. Let us explain in more detail property (iv) of Proposition 2.5. 
A priori the distribution ( V q i  - Aw;)  is defined in the whole of Q; because of ( i)  
and (ii) it is bounded (but not necessarily compact) in [ H-' ( Q ) ]  "', and its weak 
limit is zero. But if we restrict it to [ H-'  (Q,)] N ,  that is, if we skip the contributions 
coming from the obstacles and their boundaries, then it becomes a compact sequence 
with a non-zero limit. From a technical view point, in the process of extending 
p; by 0 in 51 - fie, the main ingredient is that it has compact support in Q,, i.e., it 
is equal to zero in a vicinity of the boundary dQe. 

Proposition 3.3 is proved in Section 5. Let us explain roughly what is the 
connection between Lemma 3.2 and Proposition 3.3. The test functions 
( wk, qi) l  k (  are obtained by rescaling the local solutions ( wk, q k ) l  k in each 
cell P:. Let C;' be the ball of radius e /2  whose center coincides with that of P;. In 
C;' we define 

In the remaining part P: - CF of each cell, we match the above expression with 
the value w; = ek on the boundary dP:, in order to insure that w; belongs 
to [ H'( Q ) l N .  

We are now in a position to state our main result 

THEOREM 3.4. Let M be the matrix dejned in Dejnition 3.1. Let (u,, p,) be 
the unique solution of the Stokes system (2.8). Then its extension (E,u,, P,) converges 
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weakly in [ H ; ( Q ) l N  X [L2(Q)/R] to ( u ,  p ) ,  which is the unique solution of the 
homogenized system (3.10) 

( F i n d ( u , p )  E [H;(Q)]’” X [L2(Q)/R] such that: 

Remark 3.3. The homogenized system (3.10) is a law of Brinkman type (see 
the original paper of Brinkman [ 81). The new term Mu in (3.10) expresses the 
presence of the holes which have otherwise disappeared after passing to the limit. 
We already obtained in [ I ]  a Bnnkman type law as the limit system of the Stokes 
equations with a Dirichlet boundary condition. Although the size of the holes is 
the same in both cases, the local problem and therefore the matrix Mare different, 
except in two dimensions. The dependence of the matrix M on a is not obvious. 
However, we can compare the value of M for two different values of a 

Moreover, the limit of M( a ) ,  when a tends to infinity, is the matrix M obtained 
with a Dirichlet boundary condition (see Section 5).  Finally, in order to illustrate 
the dependence of a on M ,  we give its value when the obstacle T is the unit ball 

S N  N ( N -  2 )  2 + 
2 N  N - 1  N + a  

M = -  Id for N L  3 

(S,, is the area of the unit sphere in R N ) .  

Proof: We apply the energy method (introduced by L. Tartar in [ 271, and 
adapted to the case of domains perforated with tiny holes by D. Cioranescu and F. 
Murat in [ 91). For any fixed Q, ED( Q), we introduce in the variational formulation 
(2.10) the test functions 

We obtain 
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Expanding ( 3.1 1 ), and using that w; is divergence-free, gives 

We integrate by parts in the first equation of (3.12) 

and 

An integration by parts in the second equation of (3.12) gives 

Summing the two equations in (3.12),  and combining (3.13) with (3.15) yields 

P 
du;(Vq; - Aw;) + - e(u,)  : ( V 4  0 wS, + w; 0 V 4 )  2 s,. 

Denote by 1 the characteristic function of the set Q,, which is equal to 1 in 9, and 
0 elsewhere. Introducing the extensions of ( u ~ ,  p c ) ,  and using the properties of 
( w i ,  Q;) (see Proposition 3.3), we obtain from (3.16) 
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In order to pass to the limit in (3.17), we note that, if a sequence u, converges 
strongly to a limit v in L2( R ) ,  then the sequence lQcuc converges strongly to the 
same limit u in L2( R )  (because the measure of R - R, tends to zero). Thus, using 
the estimates of Propositions 3.1 and 3.3, and Rellich's theorem, we obtain 

Integrating (3.18) by parts, and using the symmetry of M ,  gives 

Thus 

CL (3.19) V p  - p A u  +>Mu = f in [ D ' ( R ) l N .  
fl 

Besides, we know that V.(u,)  = 0 in Re, with u;n = 0 on dR,, and that lQ,u, 
converges strongly to u in [L2(  R ) l N .  Passing to the limit yields 

(3.20) V - u = O  inQ.  

Regrouping (3.19) and (3.20) we obtain the following homogenized system 

Find ( u ,  p )  E [H;(R)lN X [ L 2 ( Q ) / R ]  

V p - p A u + , M u =  f i n 8  

V . u = O  inR.  

such that 

P 
d 

(3.21) 

Because M is a positive matrix, there exists a unique solution of (3.2 1 ). Then, all 
the subsequences of (E,u,, P,) converge to the same limit. So the entire sequence 
converges. 
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Remark 3.4. When the space dimension is N = 2 or 3, Theorem 3.4 can be 
easily generalized to the Navier-Stokes equations 

Find (u,, p E )  E H, X [ L 2 (  Q,)/R] 

V p ,  + u;Vy - pAuc = f 
V.u, = 0 inQC I u;n = 0 on re 

such that 

in 9, 

(3.22) 

a,u, = 2 - - n  n - e(u,)n on I',. I ( 2  ) 
For N = 2 or 3, it is well known that there always exists a solution of system (3.22), 
which is unique at least for small values of 11 f (ILztn). For such a forcef, the extension 
of the solution (Ecu,, P,) converges weakly in [H;(Q)]" X [L2(Q)/rW] to ( u ,  p), 
which is the unique solution of the homogenized system (3.23) 

Find ( u ,  p) E [H;(Q)lN X [L2(Q)] /R]  

V p  + u-Vu  - p A u  + 7 Mu = f 

V . u = O  i n n .  

such that 

P in D 
U 

(3.23) 

More precisely, because the sequence E,u, converges weakly to u in [HA( n ) l N ,  the 
non-linear term E,u;V(EcuC) converges strongly to u .Vu in [ H - l (  Q)]", for N = 
2 or 3. It is worth noticing that the local problem, the functions ( w i ,  q i ) l  s k c N ,  

introduced in Proposition 3.3, and therefore the matrix M, are exactly the same 
for Stokes and Navier-Stokes homogenization. 

Remark 3.5. In [ 1 1  we gave several other theorems, including correctors for 
both the velocity and the pressure, and error estimates. We also generalized Theorem 
3.4 to the case of a surface distribution of the holes. All those results still hold here, 
with slight changes in the proofs due to the difference between the Dirichlet boundary 
condition in [ 11  and the slip boundary condition under consideration in this paper. 
For brevity we do not repeat those proofs, and we refer to [ 11 for further details. 

4. Other Scalings 

In this section we consider scalings of the hole size and of the slip coefficient 
different from the critical one (3.1 ). First, we keep the size of the holes critical, 
and we examine the full range of values of the slip coefficient. Second, we briefly 
describe what happens for holes larger or smaller than critical, which is a mere 
reproduction of the situation described in Part I1 of [ I ] .  
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PROPOSITION 4.1. Assume that the following scaling holds 

(4.1) 
lim a,a, = +cc 

where cr is a strictly positive constant. Then Theorem 3.4 is still true, and the matrix 
A 4  in the homogenized system (3.10) is obtained through a local problem with a 
Dirichlet boundary condition, which corresponds in Lemma 3.2 to the limit value 
ff = +co. 

Proot Because a, is larger than 1 / ac ,  we can still derive from Lemma 2.4 the 
uniform coerciveness of the variational formulation (2.10) 

(4.2) 

Thus, we obtain the same estimates, as in Proposition 3.1, for the velocity and the 
pressure. 

On the other hand, we may define local problems as in Lemma 3.2, but with a 
Dirichlet boundary condition on dT. Then, in the same way we can construct test 
functions ( w i ,  4 % )  which satisfy the properties of Proposition 3.3, except that 
w i .  n = 0 on I', is replaced by wi = 0 on I', . In this case the matrix A 4  corresponds 
to an infinite value of a. We repeat the proof of Theorem 3.4 with these new 
functions, and the only difference from Section 3 comes from the boundary con- 
tribution 

(4.3) 

In order to pass to the limit in this new term (4.3) we point out that, because the 
boundary dT is smooth, a standard regularity result implies that the solution wk of 
the local problem (3.6) or (3.8) satisfies 

(4.4) 

Rescaling (4.4) (see definitions (5.19) and (5.20) for the correct scaling of w; in 
terms of wk) and summing over all the holes yields 

(4.5) 
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In the meantime from (4.2) we obtain 

Combining (4.5) and (4.6) we can bound (4.3) 

(4.7) 

Thanks to the scaling (4.1 ) the upper bound in (4.7) tends to zero, so we are still 
able to pass to the limit and to obtain the homogenized system ( 3.10). 

PROPOSITION 4.2. Assume that the following scaling holds 

(4.8) 

where CJ is a strictly 

lim sea, = 0 

3sitive constant. Moreover, we explicitly assum that we have 
a Dirichlet boundary condition on the large boundary afl (but not on the boundaries 
of the holes F,). Then Theorem 3.4 is still true, and the matrix M in the homogenized 
system (3.10) is obtained through a local problem with a mixed Dirichlet-Neumann 
boundary condition which corresponds in Lemma 3.2 to the limit value a = 0. 

ProoE Because a, is smaller than I /a, ,  we can no longer derive from Lemma 
2.4 the uniform estimates for the velocity and the pressure. However, in the presence 
of a Dirichlet boundary condition on afl, these estimates are still valid. Indeed, 
since E,u, belongs to [HA( fl) lN, a standard Korn inequality in fl gives 

(4.9) 

It is easy to see, using (4.9), that the conclusion of Proposition 3.1 still holds. 
On the other hand, Lemma 3.2, which furnishes the form of the local problems, 

is still valid if the slip coefficient a is equal to zero. Then, as in Proposition 3.3, we 
construct test functions ( w i ,  q i )  (note that the matrix Mis defined for a = 0). We 
repeat the proof of Theorem 3.4 with these new functions, and the only difference 
from Section 3 comes from the boundary contribution 

(4.10) 
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If the spatial dimension is N h 3, then using the trace Lemma 2.3 we bound (4.10) 

Thanks to the scaling (4.8) the upper bound in (4.1 1 ) tends to zero, so we are still 
able to pass to the limit and to obtain the homogenized system (3.10). In the two- 
dimensional case N = 2, the definition of 6, is slightly different (see (2.2)) and we 
cannot bound (4.10) by using the trace Lemma 2.3. Remark that Lemma 2.3 is 
not optimal here because it does not use the fact that both u, and w i  have zero 
normal component on r,. Nevertheless we can still prove that (4.10) tends to zero, 
and here is the trick. Note that, in BI - T ,  the following trace inequality holds for 
any w E [ H 1 ( B l  - T ) I N ,  such that w . n  = 0 on dT 

Then, rescaling (4.12), we obtain 

and 

which implies 

With these estimates, we obtain the same bound for (4.10) as in the case N 2 3. 

PROPOSITION 4.3. Assume that the size of the holes is smaller than the critical 
one, i.e., the ratio cE,  dejned in (2.2), tends lo injnity 

(4.13) lim uc = +a. 
C + O  

We emphasize that the scaling of the slip coeficient isfree, but we explicitly assume 
that we have a Dirichlet boundary condition on the large boundary dQ (not on Ye). 
Let (u, ,  p e )  be the unique solution of the Stokes system (2.8). Then its extension 
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(Ep , ,  P,) converges strongly in [Hb(Q)]"  X [L2(0)/R] to ( u ,  p ) ,  which is the 
unique solution of the Stokes system 

Find ( u ,  p )  E [HA( Q ) l N  X [ L 2 (  st)/R] 

V p - p A u = f  i n 0  

V , u = O  i n n .  

such that 

(4.14) 

Proofi Because of the scaling (4.13), we can no longer derive uniformly 
bounded estimates of the solution with the help of Lemmas 2.4 and 2.5. Therefore, 
we need the Dirichlet boundary condition on d 0  in order to establish both Poincar6's 
and Korn's inequality with a uniform constant. For each 2) E [ H b ( 0 ) l N ,  they 
give 

Using (4.15) for E,u,, it is easy to see that the conclusion of Proposition 3.1 
still holds. 

On the other hand, because of the small size of the holes (4.13), an easy but 
tedious computation (see [ 11) shows that, for any positive value (including 0 and 
+a) ofthe slip coefficient a, the convergence ofthe test functions (wi, q i ) ,  defined 
in Proposition 3.3, is actually strong in [ H ' ( Q ) l N  X L 2 ( Q ) .  Thus, the function 
p i ,  defined as (VqZ - Awl)  in and zero elsewhere, converges strongly to zero in 
[ H - ' (  Q)]". This implies that no matrix A4 appears when passing to the limit, and 
the homogenized system reduces to the Stokes equations (4.14). This fact can be 
checked straightforwardly (i.e., without the tedious computation of the test func- 
tions) as follows. In each cell Pf, let us define a function 8, 

r 
O,(r) = 0 for 0 5 r 5 a,, 8 J r )  = - - 1 for a, 5 r 5 2a,, 

a, 

O,( r )  = 1 elsewhere, for N L 3 I 
log r - log a, 

O,(r) = 0 for 0 5 r 5 a,, 8,(r)  = for a, 5 r d c, 
log c - log a, 1 I 8,(r)  = 1 elsewhere, for N = 2. 

Then, for any 4 E D( s t ) ,  we have 

Using such test functions in the variational formulation (2.10), it is easy to see 
that the limit of (2.10) is a Stokes problem (without any additional term), because 
the sequence Ot4 converges strongly to 4 in Hb(Q2). 
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To prove that the solutions converge strongly, we observe that 

Because 0 . u  = 0 in Q and u = 0 on dQ, an integration by parts shows that 

(4.17) 

Let X, be the characteristic function of the set Qc (i.e., X, = 1 in Qe and 0 elsewhere). 
We know that the sequence e(E,u,) converges weakly to e( u )  in [ L2(  Q ) ] ” .  Because 
X, converges almost everywhere in Q to 1, the sequence x,e(E,u,) converges also 
weakly to e( u )  in [ L 2 (  Q ) ] ” ’ .  Then, using the semilower continuity of the weak 
convergence, it follows from (4.16) and (4.17) that 

The first limit in (4.18) implies the strong convergence of x,e(E,u,) to e(u) in 
[L2(Q)lN2.  To obtain the same result for e(Ecuz) (without Xc), we bound 

Thanks to Lemma 2.2 on the extension operator E,, we obtain 

The three terms in the right-hand side of (4.19) go to zero, as a consequence of 
Lemma 2.2 for the first one, the Lebesgue theorem of dominated convergence for 
the second one, and (4.18) for the last one. Hence we deduce the strong convergence 
of e(E,u,) to e(u) in [ L z ( Q ) ] ” .  Combined with the strong one in [ L 2 ( Q ) l N ,  it 
yields the strong convergence of E,u, to u in [ H ’ ( Q ) ] ” .  Then, using Lemma 2.7 
(which defines the extension of the pressure), it is easy to conclude that P, converges 
strongly to p in L2( Q)/R. 

PROPOSITION 4.4. Assume that the size of the holes is larger than the critical 
one, i.e., the ratio ce, defined in (2.2), tends to zero 

(4.20) lim cc = 0. 
8 - 9  0 
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Let (u,, pc )  be the unique solution of the Stokes system (2 .8) .  After resealing the 
velocity, theextension ( E c u c / ~ : ,  P,) converges strongly in [ L 2 ( Q ) l N  X [ L 2 ( Q ) / R ]  
to ( u ,  p ) ,  which is the unique solution of Darcy's law 

Find ( u ,  p )  E [ L 2 ( Q ) l N  X [H1(0)/R] such that 

( f - V p )  i n Q  
M-' u = -  

CL 

V . u = O  i n 0  
(4.21) 

where the matrix M i s  stillgiven by DeJiniiion 3. I ,  and depends on the slip coeficienl 
(Y obtained through the following scaling 

a = lim a.a,. 
C'O 

Iflim,,o(ar-la,)/eN = 0, then the present proposition holds only ifthere i s  a 
Dirichlet boundary condition on aQ. 

Proof: For the case of a Dirichlet boundary condition on re, this proposition 
is proved in [ 11 (see Section 3.4). Using the ideas of the present paper, the proof 
for the slip boundary condition is a mere repetition of that in [ 11. For the sake of 
brevity we do not repeat it here. However, let us emphasize that, even though the 
local problem is still given by Lemma 3.2, the test functions ( w i ,  q:) ,  involved in 
the proof, satisfy similar but weaker properties than that of Proposition 3.3. Fur- 
thermore, if lime+ o( a?- ' a,) /eN = 0, the Korn-type inequality of Lemma 2.4 fails 
to provide a uniform coercive estimate. In that case we need a Dirichlet boundary 
condition on dQ, in order to use the Korn inequality in [HA( Q ) ]  (as in Proposi- 
tion 4.3). 

5. Construction of the Test Functions 

This section is devoted to the proof of Lemma 3.2 and Proposition 3.3. We 
emphasize that, in this section, we consider only the critical scaling defined in (3.1 ). 
Actually, we focus on what is new compared to [ 11, where all the omitted details 
can be found. The treatment of the two-dimensional case is especially different 
from [ 11 in order clearly to show the source of the paradoxical result (3 .9) .  

Proof of Lemma 3.2: 
0 N 2 3  
For a fixed 4 in R N ,  consider the Stokes system (5.1 ) 
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Vq, - Aw, = 0 

V.w, = 0 

w,.n = O  o n d T  

in W N  - T 

in R N  - T I 
aw, = 2 -an n - e ( w , ) n  o n d T  1 (2  ) 

In order to prove the existence and uniqueness of a solution we seek an equivalent 
minimization problem for (5.1 ). Let D I , 2 ( W N )  be the completion, with respect to 
the L2 norm of the gradient. of the space of all smooth functions with compact 
support 

If N 2 3, the following continuous embeddings hold (see, e.g., Ladyzhenskaya [ 161 
for the first one, and Lemma 1.1, Chapter 4, in Lax-Phillips [ 17 ] for the second 
one): 

Let H, = { w E [ D 1 , 2 ( W N ) ] N / V - ~  = 0 in WNand ( w  + [).n = 0 on d T } ,  and, for 
positive a, consider the following minimization problem 

Find w;  which achieves 

(5.4) 

Because of (5.3), the functions in H, are equal to zero at infinity in the L 2 N / ( N - 2 )  
sense. Then, it is easy to check that (5.4) is equivalent to the Stokes problem (5.1 ): 
indeed, a coercive and strictly convex function on a closed, convex set admits a 
unique minimizer, and it is easy to see that w, = w; + [ is the unique solution of 
(5.1 ). In [ I ]  we also proved that there exists a unique pressure q, solving (5.1 ) in 
L2(WN). Furthermore, an integration by parts shows that the drag force F, exerted 
on T satisfies 
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Decomposing [ in C ;"= t i e j ,  we obtain 

Now, if we derive (5.5) with respect to a, no contribution comes from wE because 
it achieves the minimum, and the derivative is positive, equal to Jar 1 wt I *. This 
gives the proof that a I  S a2 implies M( a I  ) i M (  a2) .  Going back to (5.4) it is easy 
to see that the limit case when a tends to infinity corresponds to a Dirichlet boundary 
condition on dT. As in [ I ] ,  using the fundamental solution of the Stokes operator 
in R"(see [ 121 and [ 16]), we obtain asymptotic expansions at infinity ofthe solution 
of(5.1) 

These expansions are accurate if the drag force FE is non-zero. That is always the 
case: by comparison with the small ball B, included in T, it is not difficult to show 
that F F .  [ > 0 for any non-zero 4. 

N = 2  
This case is completely different from the previous one, because there is no 

solution of (5.1 ) in two dimensions (this is the well-known Stokes paradox). That 
is why we seek a solution of the Stokes equations with a logarithmic growth at 
infinity: 

(5.7) 

Vq, - Awt = 0 

V . w , = O  i n R 2 - T  

w E - n  = O  o n d T  

in R 2  - T I 
awE = 2 -.n n - e(wE)n  o n d T  1 ( 2  ) 

If T is a ball B, of radius a, we can compute an exact solution of (5 .7) ,  denoted 
by (q: ,  w:)  
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(5.8) 

( 5 . 9 )  

f(r) =7 -1 f -  Y 3 
A 

2r2 
g ( r )  = log r - - + B 

2 
h ( r )  = - - r2 

(5.10) 
4 + aa 

4 + 2aa 
B=-- log a 

Moreover, the drag force FZ is equal to 474, for any value of a and a .  In order to 
extend that result to an arbitrary shape of the obstacle T ,  we seek a solution of 
(5.7) in the form wt = w: + wl, and qt = q: + ql, where, from now on, (q:, w t )  
denotes the Stokes solution for the ball B, with a Dirichlet boundary condition 
(i.e., a = +co in formulae (5.10)). Let aBI be the homogeneous, unit mass, surface 
measure concentrated on dBI . An easy computation shows that q:e, - (dw:/dr) 
is equal to -2t on the circle dB, . By subtraction (ql,, wl,) is a solution of the 
following system 

V - w ; = O  in[W2-T I 
wl,.n = O  o n d T  

n - e ( w ; ) n  on ar ! wE = o(1og r )  at co (i.e., & + o 

(5.11) 

We shall give a minimization formulation to system (5.1 1 ) as we did for ( 5.1 ). Let 
D1,2([W2) be the completion, with respect to the L2 norm of the gradient, of the 
space of all smooth functions with compact support in R2. Unfortunately, there is 
no Sobolev embedding for D 1 . 2 ( R 2 )  (an important consequence of that fact is that 
functions of D 1 , 2 ( R 2 )  do not go to zero at infinity; for example, constants belong 
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to D1y2(R2) ) .  Nevertheless, 0. A. Ladyzhenskaya in [ 16 J proved that any smooth 
function 4 with compact support in R2 - B,  satisfies 

Thus, we can deduce a continuous embedding, weaker than (5.3) 

4 I ( r  + l)log(r + 2) 
(5.12) D','([W2) C 

Functions ofDl*2(R2) behave like o(1og r )  at infinity, in the sense of (5.12), because 
log r does not belong to the space on the right-hand side of (5.12). Let Ht = { w E 
[ D l , 2 ( R 2 ) ] 2 / V . ~ = O i n R 2 a n d  w.n =OondT} .  

Consider now the following minimization problem 

Find w; which achieves 

It is easy to check that (5.13) is equivalent to the Stokes system (5.1 1 ). As (5.13) 
admits a unique minimizer w;, we conclude that wt = w; + w! is the unique 
solution of (5.7). Now it remains to show that the drag force F, is always equal to 
474 (this paradoxical result has already been pointed out by R. Finn and D. Smith 
in [13]). We have 

Decomposing w, as w! + w; we obtain 

Let wgf be the same function as wp, but for [' # [. From (5.8)-(5.10) we know 
that w:, is equal to 0 on dB, and to log r[l + o( I ) ] ( '  at infinity. Multiplying 
equation ( 5.1 1 ) by w'$/log R and integrating by parts over BR - B ,  yields 
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For any E' we can bound (5.15 ) 

(5.16) 
C - 5 

(log R )  

When R tends to infinity, we deduce from (5.14) and (5.16) 

We now turn to the construction of the test functions, which, roughly speaking, 
are obtained by rescaling the solutions of the local problems, and expanding them 
by PT-periodicity in the whole domain Q .  

Proof of Proposition 3.3: We decompose each cell P f  in smaller subdomains. 
We set 

where C:' is the open ball of radius &/2  centered in P;, and perforated by Tf, Df 
is equal to 3; perforated by U T:, and Kf is the remainder, i.e., the comers 

Let ( w k ,  qk) ,  C k C N  be the solutions of the local problem defined in Lemma 3.2. 
of Pf. 

We define the functions (w;, q i ) ]  5 h s N  by 

For each cube Pf which meets 82 

For each cube PI entirely included in Q 

w; = ek 

q i  = 0 
in Kf 

Vqi  - Awl = 0 

v.w'k = 0 
in Df 
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(5.18) 

(5.19) 

VqT, - Awe, = 0 

v. w; = 0 
in Tf 

N 1 3  

for N = 2 

where ( w i ,  q i )  E [H1(P:)IN X L2(Pr) .  
Using the properties of the local solutions (including the asymptotic expansions 

in the case N I 3,  and the decomposition in a “spherical” part and a small remainder 
in the case N = 2), we can easily prove, as we did in [ 11, that 

( i )  q i  0 in L2( Q)/R weakly. 
(ii) w i  ekin [H1(Q)]Nweakly, andV.w; = 0 in Q. 

(iii) w ; - n  = Oand(a /a , )wi=  2[(dw;/dn).n]n - e(wi)n on r,. 
Basically the main fact is to remark that 

(IVWkl(L2(RN) < 00 for N L  3 

( (vwk( (  ~ z ( B ~ )  = 2K log R[1 + O( I ) ]  for N = 2. 
(5 .20)  

Then by rescaling (5.20), and summing over cells P; (the number of which is of 
order E - ~ ) ,  we obtain 

For the sake of simplicity we omitted in (5.21) the estimates of VwT, in 0: and in 
T:, which anyway turn out to be similar (and even stronger) to those in CF (see 
[ 11 for details). 



NAVIER-STOKES EQUATIONS 639 

The main point to prove in Proposition 3.3 is the last statement (iv), namely 

(iv) Let p; = Vq; - Aw; E [H-‘(Q,)]”.  Then p i  has compact support in $2,. 

Moreover, extending p i  by 0 in Q - Qe we have 

1 
p; --* 7 Mek in [ H - ’ ( Q ) l N  strongly. 

0 

First, thanks to the definitions ( 5 . 1 8 )  and (5.19), the function (V4i  - Aw;) is 
equal to zero everywhere in Q, except on the boundaries of Cic and 0:. Thus g; 
has compact support in Qc as claimed in (iv). Second, we shall prove that p i  con- 
verges strongly to ( 1 / 0 ~ 2 ~ ) F k  in [ H - ’ ( Q ) l N .  However we only sketch this proof, 
because it is a mere repetition of Lemmas 2.3.3 and 2.3.7 in [ 11. A tedious com- 
putation yields the strong L2 convergence of (q ; ,  Vw;) to zero in the union of the 
of. Thus the part of 04;  - Aw; concentrated on the boundaries of the Df converges 
strongly to zero in [ H-l ( Q ) ]  N .  On the other hand, because of the definition of the 
function p i  we may skip the contribution of Vqi - Aw; on the boundaries dC:C f7 
dTf. It only remains to prove that 

(where 6f/’ is the unit mass concentrated on the sphere dCp f l  807) converges 
strongly to ( 1 / u ’ ~ ~ ) F ~  in [H-l(s2)lN. Introducing the solutions ofthe local problem 
leads to 

N ( c )  2 N  
[Fk + N(Fk’e:)e:]&6:/’[1 -k O (  I ) ]  for N>= 3 

I =  ’ I E N  

N ( e )  2 c ,2 e k N 2 [ 1  + o(1 ) l  for N =  2. 
I =  I 

(5 .22 )  = 

Then using a lemma of D. Cioranescu and F. Murat (see [ 9 ] ) ,  which asserts that 

S N  2 c 6:  + - 2N 

N ( e )  

in H-I(Q2) strongly 
I =  I 

in [ H-’( Q ) l N  strongly, S N  N ( c )  

2 c 6:( ek.e:)e: + - N2N ek i I =  I 
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we prove the desired convergence (see [ 11 for details) 
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