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Abstract. This work proposes a new multiscale finite element method to solve convection-
diffusion problems where both velocity and diffusion coefficient exhibit strong variations at a
much smaller scale than the domain of resolution. In that case, classical discretization meth-
ods, used at the scale of the heterogeneities, turn out to be too costly or useless. The method,
introduced in this paper, aims at solving this kind of problems on coarser grids with respect
to the size of the heterogeneities by means of particular basis functions. These basis functions
are solutions to cell problems and are designed to reproduce the variations of the solution on
an underlying fine grid. Since all cell problems are independent from each other, these prob-
lems can be solved in parallel, which makes the method very efficient when used on parallel
architectures. The convergence proof of our method is still in progress. But, on the basis of
results of periodic homogenization, an a priori error estimate, that represents a first step in
the proof, is established in this paper. Numerical results are also presented to illustrate some
homogenization results.
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1 Introduction

A first multiscale finite element method was introduced by T.Y. Hou and X.H. Wu in [1]
to efficiently solve elliptic problems with diffusion coefficients containing small-scale features.
The novelty of this method consisted in computing basis functions associated to a grid with a
coarser resolution than the fine scale and which contain the small-scale variations. This method
was based on results of the periodic homogenization theory shown, for example, in [2], [3]
and [4]. Other multiscale methods which also stem from homogenization results, were proposed
in [5], [6], [7] and [8].

In [9], a multiscale method was first applied for the resolution of a convection-diffusion
problem with high Péclet numbers. The problem we address in this paper is however different.
Convection is still dominating but the scaling is not the same. For this second problem, a method
called the Heterogeneous Multiscale Method (HMM) was proposed in [10]. This method can be
used to compute more accurately a solution at the coarse scale but it is not designed to reproduce
the variations of the solution at a finer scale. Moreover, this method assumes that the diffusion
and velocity field only have a small scale behavior and that they are constant on the macro scale.

The problem considered in this paper is introduced in Section 2. Known homogenization
results for the periodic case are then summarized and an a priori error estimate between the
exact solution and the first two terms of its two-scale expansion is established in Section 3.
Having proved that the two-scale expansion can be a good approximation of the solution, we
introduce in Section 4 our new multiscale method to compute numerically this approximation.
Section 5 presents our first numerical results.

2 Statement of the problem

We consider, in this work, the following advection-diffusion equation, defined on an open
set (0, T )× Ω, Ω ⊂ Rd and T > 0:{

ρ∗ (x∗) ∂c∗

∂t∗
(t∗, x∗) + b∗ (x∗) · ∇c∗ (t∗, x∗)− div (A∗ (x∗)∇c∗ (t∗, x∗)) = 0 in (0, T )× Ω

c∗ (0, x∗) = c0 (x∗) in Ω.
(1)

In (1), ρ∗ represents the porosity, b∗ the velocity, A∗ the diffusion tensor, c∗ a concentration and
we assume that

div (b∗) = 0.

Problem (1) can be rescaled following the same ideas as in [11], [12] and [13]. Let l be a
characteristic length of the variations of the properties, LR a characteristic length of the size
of the domain Ω and let TR represent our time scale. We set ε = l

LR
, we denote by ρR, bR,

cR, AR characteristic values for the porosity, velocity, concentration and diffusion and define
adimensionalized variables which are

x = x∗

LR
, t = t∗

TR
, ρε(x) = ρ∗(x∗)

ρR
,

bε(x) = b∗(x∗)
bR

, Aε(x) = A∗(x∗)
AR

, uε(t, x) = c∗(t∗,x∗)
cR

.

The dimensionless equation thus reads

ρε ∂uε

∂t
+

bRTR

LR

bε · ∇xuε −
ARTR

L2
R

divx (Aε∇xuε) = 0 in (0, T )× Ωε, (2)

with Ωε =
{

x∗

LR
| x∗ ∈ Ω

}
. For this problem, depending on the scale, two Péclet numbers can

be defined:
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• a local one defined by

Peloc =
lbR

AR

,

• and a macroscopic one defined by

Pe =
LRbR

AR

.

Using these definitions, we have Pe = 1
ε
Peloc. Furthermore, we set TR =

L2
R

AR
and rewrite (2)

in
ρε ∂uε

∂t
+ Pe bε · ∇xuε − divx (Aε∇xuε) = 0 in (0, T )× Ωε.

Assuming that our local Péclet number is equal to 1, Pe = 1
ε
, and our initial problem (1)

becomes:{
ρε(x)∂uε

∂t
+ 1

ε
bε (x) · ∇uε − div (Aε (x)∇uε) = 0 in (0, T )× Ωε

uε (0, x) = u0 (x) in Ωε.
(3)

In the following, our study will only deal with this dimensionless problem. We assume in the
next section that the parameters ρε, bε, Aε are periodic functions, which will allow us to state
some homogenization results.

Remark 1: In [9], T.Y. Hou and D. Liang are concerned with the following equation:{
∂uε

∂t
+ bε (x) · ∇uε − εmdiv (Aε (x)∇uε) = 0 in R+ × Ωε,

uε (0, x) = u0 (x) in Ωε,
(4)

where m ∈ [2, +∞[. Our case corresponds to m = 1. Moreover, a time of order 1 in (4) is
equivalent to a time of order ε in (3).

3 The periodic case

From now on, Ω is the entire space Rd. Let us consider the following problem defined on
Rd × (0, T ): Find uε such that{

ρ
(

x
ε

)
∂tuε + 1

ε
b
(

x
ε

)
· ∇uε − div

(
A

(
x
ε

)
∇uε

)
= 0 in (0, T )× Rd,

uε(0, x) = u0(x) in Rd.
(5)

ρ(y), b(y) and A(y) are assumed to be Y -periodic functions where Y = (0, 1)d is the unit cube.
We also assume that:

• ∀y ∈ Y, ρ(y) > ρmin > 0 and ρ is bounded,

• div(b) = 0, b ∈ L∞(Y ),

• A is bounded and coercive:

∀ξ ∈ Rd, Csta ‖ξ‖2 6 Aξ · ξ 6 Cbnd ‖ξ‖2 ,

‖·‖ being the Euclidean norm, Csta and Cbnd positive constants.

In the following, ρ̄ stands for the mean value of ρ:

ρ̄ =

∫
Y

ρ(y)dy.
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3.1 Asymptotic expansion with drift

As in [14], [12] or [15], we assume that the solution uε can be expressed by means of an
asymptotic expansion with drift:

uε(t, x) =
+∞∑
i=0

εiui

(
t, x− b∗t

ε
,
x

ε

)
, (6)

where,

• for i = 0, . . . , d, ui(t, x, y) are Y -periodic functions with respect to y,

• b∗ is a constant vector which represents the homogenized velocity. Its expression will be
given later.

We insert this expansion into equation (5). The identification of the terms corresponding to each
power of ε leads to the following set of equations:

b(y) · ∇yu0 − divy (A(y)∇yu0) = 0, (7)

−ρ(y)b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy (A(y) (∇xu0 +∇yu1)) = 0, (8)

b(y) · ∇yu2 − divy (A(y)∇yu2) = −ρ(y)∂tu0 + ρ(y)b∗ · ∇xu1 − b(y) · ∇xu1

+ divy (A(y)∇xu1) + divx (A(y) (∇yu1 +∇xu0)) . (9)

From equation (7), we deduce that u0(t, x, y) does not depend on the third variable y ∈ Y so
that we can set

∀y ∈ Y, u0(t, x, y) = u(t, x).

From the compatibility condition of equation (8), we deduce that the homogenized velocity b∗

is given by

b∗ =

∫
Y

b(y)dy

ρ̄
. (10)

Morevoer, for each i = 1, . . . , d, we introduce the function wi, solution to the cell problem

b(y) · (∇ywi + ei)− divy (A(y) (∇ywi + ei)) = ρ(y)b∗ · ei, on Y. (11)

Using equation (8), u1 can be computed, up to a function of x, using the formula

u1

(
t, x− b∗t

ε
, y

)
=

d∑
i=1

∂u

∂xi

(
t, x− b∗t

ε

)
wi(y). (12)

From the compatibility condition of (9) we deduce that the homogenized problem for u is

ρ̄∂tu− div (A∗∇u) = 0, (13)

where
A∗

i,j =

∫
Y

A(y) (∇ywi + ei) · (∇ywj + ej) dy. (14)

The results presented here are deduced from a formal analysis. In [16], the following con-
vergence theorem is proved:
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Theorem 1. Let uε be the sequence of solutions to (5). Then∫ T

0

∫
Rd

∣∣∣∣uε(t, x)− u

(
t, x− b∗t

ε

)∣∣∣∣2 dxdt −→
ε→0

0,

where b∗ and u are given by equations (10)-(14).

The proof of this theorem results from the theory of the two-scale convergence with drift.
This result, which states that u is a good approximation of uε with respect to the L2 norm, is
not sufficient for higher order approximations and will be improved in the next section.

3.2 A priori error estimate

The aim of this section is to prove the following a priori error estimate.

Theorem 2. Let uε be the sequence of solutions to (5) and u and u1 be given by equations (10)-
(12). Then∥∥∥∥uε(t, x)− u

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

)∥∥∥∥
L2((0,T ),H1(Rd))

6 Cε, (15)

where C depends on the final time T and not on ε.

Inequality (15) allows us to justify the approximation

uε(t, x) ≈ u

(
t, x− b∗t

ε

)
+ ε

d∑
i=1

∂u

∂xi

(
t, x− b∗t

ε

)
wi

(x

ε

)
(16)

which will be the starting point of our new multiscale method.
To prove Theorem 2, we use the same method as the one used in [17] for the elliptic case. A
first intermediate result is given by the following Lemma.

Lemma 3. Let uε be the sequence of solutions to (5) and u and u1 be given by equations (10)-
(12). Then

‖rε‖L∞((0,T ),L2(Rd)) + ‖∇rε‖L2((0,T )×Rd)
d 6 C,

where

rε(t, x) = ε−1

(
uε(t, x)− u0

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

))
.

Theorem 2 is then a consequence of Lemma 3. Indeed, using the Cauchy-Schwarz inequality,
we can notice that

‖u‖2
L2((0,t1),H1(Rd)) 6 t1 ‖u‖2

L∞((0,t1),L2(Rd)) + ‖∇u‖2

L2((0,t1)×Rd)
d .

Proof. First, let us notice that, since b∗, u and u1 are defined by equations (10)-(12), equa-
tions (7)-(9) are also verified with a function u2 that can be defined as the solution of equation
(9). In fact, replacing ∂tu with 1

ρ̄
div (A∗∇u) in equation (9), u2 can be defined up to a function

5
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of x by u2(t, x, y) =
∑d

i,j=1 χi,j(y) ∂2u
∂xi∂xj

(t, x), where each function χi,j is the periodic solution
of the second-order cell problem:

b(y) · ∇yχi,j(y)− divy (A(y)∇yχi,j(y)) = −ρ(y)

ρ̄
A∗

i,j + (ρ(y)b∗i − bi(y)) wj(y)

+
d∑

k=1

(
∂

∂yk

(wiAk,j) (y) + Ai,k(y)
∂wj

∂yk

(y)

)
+ Ai,j(y), in Y. (17)

It is important to notice that, using the De Giorgi-Nash-Moser theorem, the functions wi and
χi,j are bounded in L∞ (Y ). Consequently, the space norms of u1 and u2 can be bounded, up to
a multiplicative constant, respectively by the derivatives and by the second-order derivatives of
u:∥∥∥u1

(
t, ·, ·

ε

)∥∥∥
L2(Ω)

6 C ‖∇u(t, ·)‖L2(Ω)d ,
∥∥∥u2

(
t, ·, ·

ε

)∥∥∥
L2(Ω)

6 C
∥∥∇2u(t, ·)

∥∥
L2(Ω)d×d .

Let B (rε) be defined by

B (rε(t, x)) = ρ
(x

ε

)
∂trε +

1

ε
b
(x

ε

)
· ∇rε − div

(
A

(x

ε

)
∇rε

)
.

The expression of rε is inserted in B (rε(t, x)) and we use the fact that

∇ = ∇x +
1

ε
∇y.

Developing all terms and using equation (5) as well as equations (7)-(9), we have:

B (rε(t, x)) = ε−1
(
b
(x

ε

)
· ∇yu2 − divy

(
A

(x

ε

)
∇yu2

))
− ρ

(x

ε

)
∂tu1 + divx

(
A

(x

ε

)
∇xu1

)
.

Using the fact that div(b) = 0, this can be rewritten as:

B (rε(t, x)) = div
(
b
(x

ε

)
u2

)
− div

(
A

(x

ε

)
∇yu2

)
− b

(x

ε

)
· ∇xu2 + divx

(
A

(x

ε

)
∇yu2

)
− ρ

(x

ε

)
∂tu1 + divx

(
A

(x

ε

)
∇xu1

)
.

Multiplying this equation by rε and integrating with respect to t and x, for any t1 ∈ [0, T ], we
get:∫∫

(0,t1)×Rd

B (rε(t, x)) rε(t, x)dtdx = −
∫∫

(0,t1)×Rd

(
b
(x

ε

)
u2

(
t, x− b∗t

ε
,
x

ε

)
· ∇rε(t, x)

+ A
(x

ε

)
∇yu2

(
t, x− b∗t

ε
,
x

ε

)
· ∇rε(t, x)

+

(
−b

(x

ε

)
· ∇xu2

(
t, x− b∗t

ε
,
x

ε

)
+ divx

(
A

(x

ε

) (
∇yu2

(
t, x− b∗t

ε
,
x

ε

)
+∇xu1

(
t, x− b∗t

ε
,
x

ε

)))
− ρ

(x

ε

)
∂tu1

(
t, x− b∗t

ε
,
x

ε

))
rε(t, x)

)
dtdx.
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If u is sufficiently regular, we have:∣∣∣∣∫∫
(0,t1)×Rd

B (rε(t, x)) rε(t, x)dtdx

∣∣∣∣ 6 C

(
‖rε‖L∞((0,t1),L2(Rd)) + ‖∇rε‖L2((0,t1)×Rd)

d

)
,

where the constant C depends on T , ‖b‖∞, Cbnd, ‖u‖L2((0,T ),H3(Rd)) and ‖∂tu‖L2((0,T ),H2(Rd)).

Furthermore, using equation (13), ∂tu is equivalent to ∇2u. Therefore, C depends on T , ‖b‖∞,
Cbnd and ‖u‖L2((0,T ),H4(Rd)). Besides, the definition of B gives:

B (rε(t, x)) rε(t, x) =
1

2
ρ

(x

ε

)
∂t

(
r2
ε

)
+

1

2ε
b
(x

ε

)
· ∇

(
r2
ε

)
− div

(
A

(x

ε

)
∇rε

)
rε.

Integrating with respect to x and t and integrating by parts with respect to x, we have, since
div bε = 0:∫∫

(0,t1)×Rd

B (rε(t, x)) rε(t, x)dtdx =
1

2

∫
Rd

ρ
(x

ε

)
rε (t1, x)2 dx− 1

2

∫
Rd

ρ
(x

ε

)
rε(0, x)2dx

+

∫∫
A

(x

ε

)
∇rε · ∇rε(t, x)dtdx.

Since A is coercive, we have∣∣∣∣∫∫
A

(x

ε

)
∇rε(t, x) · ∇rε(t, x)dtdx

∣∣∣∣ > Csta ‖∇rε‖2
L2((0,t1)×Rd) .

Moreover, as ρ is bounded and positive, there exist ρmin, ρmax positive constants such that:

1

2

∫
Rd

ρ
(x

ε

)
rε (t1, x)2 dx > ρmin ‖rε (t1, ·)‖2

L2(Rd) ,

and
1

2

∫
Rd

ρ
(x

ε

)
rε(0, x)2dx 6 ρmax ‖rε(0, ·)‖2

L2(Rd) .

Thus,

Csta ‖∇rε‖2

L2((0,t1)×Rd)
d + ρmin ‖rε (t1, ·)‖2

L2(Rd) − ρmax ‖rε (0, ·)‖2
L2(Rd)

6
∫∫

(0,t1)×Rd

B (rε (t, x)) rε (t, x) dtdx

6 C

(
‖rε‖L∞((0,t1),L2(Rd)) + ‖∇rε‖L2((0,t1)×Rd)

d

)
.

Let us prove that ‖rε (0, ·)‖2
L2(Rd) is bounded.

First of all, using the definition of rε, we have

rε (0, x) = ε−1
(
uε (0, x)− u0 (0, x)− εu1

(
0, x,

x

ε

))
= −u1

(
0, x,

x

ε

)
= −

d∑
i=1

∂u0

∂xi

(x)wi

(x

ε

)
.
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Since the gradient of the initial value u0 is assumed to be bounded in L2
(
Rd

)d and the functions
wi are bounded in L∞ (Y ), we get

‖rε (0, ·)‖L2(Rd) 6 C.

Hence:

Csta ‖∇rε‖2

L2((0,t1)×Rd)
d + ρmin ‖rε (t1, ·)‖2

L2(Rd) − C ′

6 C

(
‖rε‖L∞((0,t1),L2(Rd)) + ‖∇rε‖L2((0,t1)×Rd)

d

)
, (18)

with C ′, C > 0. The function rε is in C0
(
(0, T ), L2

(
Rd

))
so there exists T0 6 T such that

‖rε (T0, ·)‖L2(Rd) = ‖rε‖L∞((0,T ),L2(Rd))

and in this case:
‖rε‖L∞((0,T0),L2(Rd)) = ‖rε‖L∞((0,T ),L2(Rd)) .

Applying inequality (18) with t1 = T0 gives:

Csta ‖∇rε‖2

L2((0,T0)×Rd)
d + ρmin ‖rε‖2

L∞((0,T ),L2(Rd)) − C ′

6 C

(
‖∇rε‖L2((0,T0)×Rd)

d + ‖rε‖L∞((0,T ),L2(Rd))

)
.

Let us now use the following result.

Lemma 4. If Xε is a sequence of positive real numbers, verifying:

X2
ε − C1 6 C2Xε, with C1, C2 > 0 (19)

then, there exists a constant C such that

Xε 6 C.

Thus, using Lemma 4 with Xε = ‖∇rε‖L2((0,T0)×Rd)
d + ‖rε‖L∞((0,T ),L2(Rd)), we have:

‖∇rε‖L2((0,T0)×Rd)
d + ‖rε‖L∞((0,T ),L2(Rd)) 6 C,

which implies
‖rε‖L∞((0,T ),L2(Rd)) 6 C. (20)

Using inequality (18) with t1 = T and the fact that ‖rε‖L∞((0,T ),L2(Rd)) is bounded, we deduce
from (18) that:

Csta ‖∇rε‖2

L2((0,T )×Rd)
d + 0− C ′ 6 C

(
‖∇rε‖L2((0,T )×Rd)

d + C

)
.

A new application of Lemma 4 with Xε = ‖∇rε‖L2((0,T )×Rd)
d gives:

‖∇rε‖L2((0,T )×Rd)
d 6 C. (21)

Gathering equations (20) and (21), we finally obtain

‖∇rε‖L2((0,T )×Rd)
d + ‖rε‖L∞((0,T ),L2(Rd)) 6 C.
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4 A new multiscale finite element method

In this section, we again consider problem (3) defined on Ω. The domain is assumed to be
a rectangular cuboid: Ω =

∏d
i=1 (0, li), so that periodic boundary conditions can be set on the

boundary of the domain ∂Ω. Our problem consists in finding a solution uε to{
ρε (x) ∂tuε + 1

ε
bε (x) · ∇uε − div (Aε (x)∇uε) = 0 in Ω× (0, T )

uε(0, x) = u0(x) in Ω,
(22)

where ε > 0 and ρε, bε, Aε and u0 are Ω-periodic functions. Here Aε and bε are not assumed
to be ε-periodic functions. However, Aε is assumed to be bounded and coercive, bε is assumed
to be bounded and div (bε) = 0. We denote by H1

#(Ω) the set of the Ω-periodic functions of
H1(Ω).

4.1 Idea of the method

As suggested in [18], we introduce oscillating test functions ŵε
i which stand for xi+εwi

(
x
ε

)
,

each wi

(
x
ε

)
being the solution of equation (11). With this definition, we have

∇ŵε
i (x) = ei + (∇ywi)

(x

ε

)
.

Since divy = εdiv, equation (11) becomes:

b
(x

ε

)
· ∇ŵε

i (x)− εdiv
(
A

(x

ε

)
∇ŵε

i (x)
)

= ρ
(x

ε

)
b∗ · ei.

Thus, each ŵε
i is the ε-periodic solution to:

1

ε
b
(x

ε

)
· ∇ŵε

i − div
(
A

(x

ε

)
∇ŵε

i

)
=

1

ε
ρ

(x

ε

)
b∗ · ei in εY. (23)

Using approximation (16), uε verifies

uε(t, x) ≈ u

(
t, x− b∗t

ε

)
+

d∑
i=1

(ŵε
i (x)− xi)

∂u

∂xi

(
t, x− b∗t

ε

)
.

Here, one important point is to notice that the right hand side of this approximation is a first
order Taylor expansion with respect to the space variable. Thus, equivalently, we have:

uε(t, x) ≈ u

(
t, ŵε (x)− b∗t

ε

)
.

If we set

ũ(t, x) = u

(
t, x +

b∗t

ε

)
,

we have

u

(
t, ŵε (x)− b∗t

ε

)
= ũ(t, ŵε(x))

and the previous approximation can be rewritten as:

uε(t, x) ≈ ũ (t, ·) ◦ ŵε(x). (24)

The multiscale method presented in this paper is based on this approximation and a set of mul-
tiscale basis functions is built following this idea of composition. We detail this new numerical
scheme in the next section.
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4.2 Discretization

Let KH be a mesh of resolution H with Ω =
⋃

K∈KH
K. In the following, KH will be

referred to as the coarse mesh. On each coarse cell K ∈ KH , we define the functions w̃ε,K
i by:{

1
ε
bε(x) · ∇w̃ε,K

i − div
(
Aε (x)∇w̃ε,K

i

)
= 1

ε
ρε(x)b∗K · ei in K,

w̃ε,K
i = xi on ∂K,

(25)

where

b∗K =

∫
K

bε(x)dx∫
K

ρε(x)dx
.

In practice, equation (25) is solved, on each cell K, using a finite element method on a local
fine mesh of resolution h � H . A function wε,H

i is then defined on Ω by gathering all functions
w̃ε,K

i of each cell K. Defining the operator Dε
t,x = ∂t+

1
ε
b∗(x)·∇, Problem (22) can be rewritten

in the form: ∀v ∈ H1
#(Ω),∫

Ω

ρε(x)Dε
t,x

(
ũ (t, ·) ◦ wε,H(x)

) (
v ◦ wε,H

)
(x)dx

+

∫
Ω

(
Aε(x)∇

(
ũ (t, ·) ◦ wε,H(x)

)
· ∇

(
v ◦ wε,H

)
(x)

+
1

ε
(bε(x)− ρε(x)b∗(x)) · ∇

(
ũ (t, ·) ◦ wε,H(x)

) (
v ◦ wε,H

)
(x)

)
dx = 0.

4.2.1 Time discretization

We now use the characteristic-Galerkin method, presented in [19], to compute the time
derivative. This method introduces, for each time tn+1, a function χ which satisfies the ordinary
differential equation:

d

dt
χ(t) =

1

ε
b∗ (χ(t)) , χ

(
tn+1

)
= x.

This definition implies

∂

∂t

(
ũ

(
t, wε,H ◦ χ(t)

)) (
tn+1

)
= Dε

t,x

(
ũ

(
t, wε,H(x)

)) (
tn+1, x

)
.

Then, we compute a function Xn defined by

Xn (x) = χ
(
tn+1 − δt

)
.

Having introduced this time discretization, the problem now consists in finding a solution
un+1 ∈ H1

#(Ω) such that for all v ∈ H1
#(Ω):∫

Ω

ρε(x)
un+1 ◦ wε,H(x)− un ◦ wε,H ◦Xn(x)

δt
v ◦ wε,H(x)dx

+

∫
Ω

(
Aε(x)∇

(
un+1 ◦ wε,H

)
(x) · ∇

(
v ◦ wε,H

)
(x)

+
1

ε
(bε(x)− ρε(x)b∗(x)) · ∇

(
un+1 ◦ wε,H

)
(x)

(
v ◦ wε,H

)
(x)

)
dx = 0. (26)
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This method is unconditionally stable, which means that there is no restriction on the value of
the time step δt. However, when χ (tn+1 − δt) does not belong to the domain Ω, its value cannot
be properly defined. In the general case, one often assigns the boundary value to χ (tn+1 − δt).
Here, since periodic boundary conditions are imposed, we use, for one side of the domain, the
value available on the opposite one. There is therefore no constraint on the value of δt.

4.2.2 Definition of the multiscale finite element space

Let VH be a linear subspace of H1
#(Ω) associated to the coarse mesh KH , DH the dimension

of this space i.e. the number of degrees of freedom,
(
ΦH

l

)
l
the set of basis functions of the space

VH . We define a new space Vε,H generated by the multiscale basis functions:

Φε,H
l = ΦH

l ◦ wε,H , l = 1, . . . , DH

where we will compute our approximation of uε. The variational formulation (26) then amounts
to finding un+1

ε,H ∈ Vε,H such that ∀vε,H ∈ Vε,H :∫
Ω

ρε(x)
un+1

ε,H (x)− un
ε,H ◦Xn(x)

δt
vε,H(x)dx +

∫
Ω

(
Aε(x)∇un+1

ε,H (x) · ∇vε,H(x)

+
1

ε
(bε(x)− ρε(x)b∗(x)) · ∇un+1

ε,H (x)vε,H(x)

)
dx = 0. (27)

4.3 Building the global system

Since

un
ε,H(x) =

DH∑
i=1

un
i Φε,H

i (x), (28)

testing equation (27) with each basis function Φε,H
i leads to a system of DH equations, with, for

each i = 1, . . . , DH :

DH∑
j=1

∫
Ω

(
un+1

j

δt
ρε(x)Φε,H

j (x)Φε,H
i (x)−

un
j

δt
ρε(x)Φε,H

j ◦Xn(x)Φε,H
i (x)

+un+1
j Aε(x)∇Φε,H

j (x)·∇Φε,H
i (x)+un+1

j

1

ε
(bε(x)− ρε(x)b∗(x))·∇Φε,H

j (x)Φε,H
i (x)

)
dx = 0.

As shown previously, u is a good zero-order approximation of uε in the L2-norm but not in
the H1-norm. Similarly, Φi is a good zero-order approximation of Φε,H

i (x) in the L2-norm.
Therefore, when its gradient is not involved, the function Φε,H

i (x) is replaced by Φi.
As a result, for all i = 1, . . . , DH , the system to solve is:

DH∑
j=1

un+1
j

(∫
Ω

(
ρε(x)Φi(x)Φj(x) + δtAε(x)∇Φε,H

i (x) · ∇Φε,H
j (x)

+
δt

ε
(bε(x)− ρε(x)b∗(x)) · ∇Φε,H

j (x)Φε,H
i (x)

)
dx

)
=

DH∑
j=1

un
j

∫
Ω

ρε(x)Φj ◦Xn(x)Φi(x)dx.

11
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This system can be rewritten in matrix form as

RUn+1 = F n, (29)

with

Un+1 ∈ RDH , Un+1
i = un+1

i ,

R ∈ RDH×DH , Ri,j =

∫
Ω

(
ρε(x)Φi(x)Φj(x) + δtAε(x)∇Φε,H

i (x) · ∇Φε,H
j (x)

+ δt
ε

(bε(x)− ρε(x)b∗(x)) · ∇Φε,H
j (x)Φε,H

i (x)

)
dx,

F n ∈ RDH , F n
i =

DH∑
j=1

un
j

∫
Ω

ρε(x)Φj ◦Xn(x)Φi(x)dx.

The computation of the basis functions and the resolution of system (29) was implemented
using the finite-element platform FreeFem++ [20]. This implementation is presented in the
next section.

Remark 2: In [10], P. Henning and M. Ohlberger apply a Heterogeneous Multiscale Method
to the case presented in this paper. This method computes un

H an approximation of u (tn, x)
solution to equation (13) at time tn, whereas our method computes an approximation of the
reconstructed solution:

u

(
tn, x− b∗tn

ε

)
+ εu1

(
tn, x− b∗tn

ε
,
x

ε

)
.

According to theorems 1 and 2, this second approximation is more precise than the first one.
Note also that un

H is computed using moving coordinates.
In [10], un

H is defined as the solution of

(un
H , ΦH)L2(Rd) =

(
un+1

H , ΦH

)
L2(Rd) + ∆tAH

(
un+1

H , ΦH

)
,

where (·, ·)L2(Rd) is the usual scalar product in L2
(
Rd

)
and AH represents the homogenized

operator. In the non-periodic case, AH is not uniform and needs to be computed on each coarse
cell by solving local problems. Nevertheless, a change of variable is required to be in the same
coordinates system as un

H . To avoid this change of variable, the properties Aε, bε and ρε are
assumed to only depend on the micro-scale.
In our approach, the multiscale solution is in the same coordinates system as the solution uε.
As a result, no change of variable is necessary and the coarse scale variations of the properties
can be taken into account.

5 Application case

Let us consider the domain Ω = (0, 1)2. The initial condition u0 is depicted in figure 1(a). It
is a piecewise linear function which is equal to 1 on the central node of the coarse mesh and to
0 on the other nodes. As mentioned before, periodic boundary conditions are imposed on ∂Ω.
The parameters of the problem were chosen in the following way:

• ε = 1
200

,

12
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(a) Initial condition (b) bε
x

Figure 1: On the left, the initial condition over the whole domain. On the right, two periods of the x-component
of the velocity field bε.

Figure 2: Cell problem solution obtained using a P1-Lagrange method.

• bε(x) =

(
−δ sin

(
2πx
ε

)
cos

(
2πy
ε

)
+ b0

x

δ cos
(

2πx
ε

)
sin

(
2πy
ε

)
+ b0

y

)
, with δ = 100 and b0

x = b0
y = 1,

• A = 1.

Intentionally, we chose a high value for δ in order to highlight the effective diffusion created by
the velocity field. Two periods of the horizontal component of the velocity are represented in
figure 1(b).
The coarse mesh is composed of 800 triangles of size H = 1

20
= 10ε. Each coarse cell is com-

posed of 5 000 fine triangles of size h = 1
1000

= ε
5
. Note that our method can avoid generating

the whole fine mesh. In this case, this mesh would contain 4 000 000 triangles.
Figures 5 and 6 show the solutions obtained at time t = 1.8× 10−3.

5.1 Cell problem resolution

The cell problem (25) features a large convection term which requires a special numerical
treatment. Indeed, if simple P1-Lagrange finite elements are used, then numerical instabilities
appear (figure 2). In order to avoid these instabilities, we introduce the following non-stationary

13
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Figure 3: Solution of the cell problem (25) obtained using a transient approach.

problem:{
∂tw

t,ε,K
i + 1

ε
bε(x) · ∇wt,ε,K

i − div
(
Aε (x)∇wt,ε,K

i

)
= 1

ε
ρε(x)b∗K · ei in K,

wt,ε,K
i = xi on ∂K.

(30)

Using a fixed time step δt0 satisfying the CFL condition:

δt0 6
εh

bε
max

,

where bε
max = ‖bε‖∞. Equation (30) is solved until a stationary solution is obtained. More

precisely, we iterate until a time t0 is reached for which∥∥∥wt0,ε,K
i − wt0+δt0,ε,K

i

∥∥∥
L2(Ω)

δt0

∥∥∥wt0,ε,K
i

∥∥∥
L2(Ω)

< η

where η is a threshold equal to 0.01 in our case. The solution wt0,ε,K
i is then taken as solution

to cell problem (25). Figure 3 shows the solution computed with this algorithm with η = 0.01.
We can observe that we obtain a more stable solution.
This algorithm still requires a high number of iterations. For the case introduced in the previous
paragraph, the solution is reached after 2 000 iterations with η = 0.01 on each coarse cell.
However, the basis functions being time-invariant, these resolutions only need to be done once.

5.2 Visualization of the solution

The matrix R and the right hand side F n in equation (29) are completed after each resolution
of cell problem (25). Once this system is solved on the coarse mesh, the multiscale solution is
computed using (28).
Since the basis functions Φε,H

i are defined on local fine meshes, plotting un
ε,H would require to

build the whole fine mesh. To avoid that, a reconstruction of the solution at the fine scale is only
done on a particular area of the domain, involving a limited number of basis functions. Outside
this area, and only for visualization purposes, we replace Φε,H

i by ΦH
i . For example, figure 4

shows the difference between a classical basis function and a multiscale basis function. These
functions are plotted on a local fine mesh corresponding to the support of the basis functions.

Figure 5(b) shows the coarse multiscale solution for which all basis functions Φε,H
i are re-

placed by ΦH
i . In figure 6(b), a few basis functions Φε,H

i are used. This solution will be referred
to as the partially refined multiscale solution.
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(a) ΦH
i (b) Φε,H

i

Figure 4: A coarse basis function (ΦH
i ) and the corresponding multiscale basis function (Φε,H

i ) represented on
their support.

5.3 Analysis of the results in the periodic case

In the following, the coarse solution will stand for the solution to the convection-diffusion
problem with constant velocity 1

ε
b∗ and diffusivity A.

Since this practical case features ε-periodic coefficients, the multiscale solution can be di-
rectly compared to the homogenized solution ũn, defined by

ũn = un

(
x− b∗tn

ε

)
,

where un is the solution of the homogenized equation (13) at time tn = nδt. This function is
represented in figure 5(c). The matrix A∗ obtained in this case is:

A∗ =

(
4.30702 0.0132418

0.0132418 4.30702

)
.

In fact, the homogenized coefficient A∗ includes an additional diffusion induced by the velocity
through the functions w (see equations (14) and (11)). This phenomenon, known as Taylor
dispersion, can be observed in figure 5(c): the solution of the homogenized problem is more
diffusive than in figure 5(a) where the transport problem was simulated with the velocity 1

ε
b∗

and the diffusivity A. We notice that the coarse multiscale solution, depicted in figure 5(b),
is also able to reproduce this coarse scale diffusion. The multiscale method does not compute
explicitly the homogenized coefficient A∗ but the use of the basis functions Φε,H

i allows us to
reproduce the Taylor dispersion at the macro scale.

Moreover, using equation (24), we saw that a better approximation of the exact solution is
given by

ũn
T = un

(
x− b∗tn

ε
+ εw

(x

ε

))
.

This function is used to improve locally the approximation ũn and will be called the partially
refined homogenized solution (figure 6(a)). In order to see the refinements more clearly, fig-
ures 6(a) and 6(b) only feature a part of the mesh (12 coarse cells in the direction x and 9 coarse
cells in the direction y). Figure 6(c) shows the fine scale oscillations of the multiscale solution.
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(a) Coarse solution (b) Coarse multiscale solution (c) Homogenized solution

Figure 5: Comparison over the whole domain between the coarse solution, the coarse multiscale solution and the
homogenized solution ũn.

(a) Partially refined homogenized so-
lution

(b) Partially refined multiscale solu-
tion

(c) Zoom on the multiscale so-
lution

Figure 6: Comparison over a part of the domain between the partially refined multiscale solution and the partially
refined homogenized solution. On the right, a zoom is made on the pink area represented in 6(b).
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