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Abstract

This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup

neutron di�usion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the ®rst eigenvector

of the multigroup system in the periodicity cell controls the oscillatory behaviour of the solutions, whereas the global trend is as-

ymptotically given by a homogenized di�usion eigenvalue problem. The neutron ¯ux, corresponding to the ®rst eigenvector of the

multigroup system, tends to the product of the ®rst periodic and homogenized eigenvectors. This result justi®es and improves the

engineering procedure used in practice for nuclear reactor core computation. Ó 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

The power distribution in a nuclear reactor core is often obtained by solving an eigenvalue problem for a
system of neutron di�usion equations. In a steady-state regime, such a system expresses the balance be-
tween neutrons produced by ®ssion and neutrons absorbed or di�used by the medium. The unknown is a
vector of neutron ¯uxes where each component corresponds to a given energy group, i.e. to neutrons with a
given speed or kinetic energy. For a given bounded domain X, this model reads

ÿdiv A�x�ru� � � R�x�u � 1

keff

r�x�u in X; u � 0 on oX; �1�

where A is the di�usion coe�cient, R the total cross section, r the ®ssion cross section, and the Dirichlet
boundary condition implies that no neutrons enter or leave the domain. In truth, the unknown is the couple
�kÿ1

eff ;u� of the ®rst eigenvalue and eigenvector for Eq. (1). The eigenvalue keff is a measure of the balance
between production and removal of neutrons in a quasistatic limit. If keff < 1, too many neutrons are
di�used or absorbed in the core compared to their production by ®ssion; the nuclear chain reaction dies
out, and the reactor is said to be sub-critical. If keff > 1, too many neutrons are created by ®ssion, and the
reactor is said to be super-critical. In such a case, absorbing media (the so-called control rods) should be
added to control the reaction. Eventually, when keff � 1, the reactor is said to be critical; a perfect balance
between ®ssion and absorption±di�usion is obtained. Remark that Eq. (1) gives the spatial distribution of
the neutron ¯ux (which in turn yields the total power) but not its intensity since an eigenvector is de®ned up
to a multiplicative constant. In Section 2 it is checked that, under suitable assumptions, the ®rst eigenvector
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of (1) is simple and positive which means that Eq. (1) makes physical sense (a neutron ¯ux, as a density
function, should be positive).

The di�usion model (1) is routinely used in many industrial codes for studying and optimizing nuclear
reactor cores. Unfortunately, such domains are very heterogeneous, composed of more than 40 000 dif-
ferent fuel rods immersed in a moderator (usually water), not to mention control rods, grids, and so on.
Since a ®ne mesh is required, the direct computation of the solution is therefore long and expensive.
Engineering procedures have been set up to obtain quick approximations of solutions. It amounts to
homogenize Eq. (1) according to the following rule. The exact ¯ux u is decomposed in the product of two
terms

u�x� � w�x�u�x�;
where w is a rapidly varying ¯ux computed in sub-domains seen as periodic cells, and u is a slowly varying
¯ux computed in the whole domain with homogeneous averaged coe�cients. More precisely (see, e.g., Refs.
[10,15,27,28]), the microscopic ¯ux w is computed in each sub-domain Xp (typically a fuel assembly) as the
solution wp � wjXp

of the so-called in®nite medium equation

ÿdiv A�x�rwp

ÿ �� R�x�wp � lpr�x�wp in Xp;
owp

on
� 0 on oXp:

Then, averaged coe�cients are evaluated by using some kinds of physically heuristic formulas as, for
example in the one-energy-group case (other choices may be found in the above references and [23]),

Ap �
R

Xp
wp�x�dxR

Xp

wp�x�
A�x� dx

; Rp �
R

Xp
R�x�wp�x�dxR
Xp

wp�x�dx
; rp �

R
Xp

r�x�wp�x�dxR
Xp

wp�x�dx
: �2�

The macroscopic ¯ux u�x� is then computed as a solution of Eq. (1) with the averaged coe�cients (2),
which are constant on each subdomain Xp. This homogenization procedure works ®ne in many practical
numerical computations. Recently, there has been a renewed interest in ®nding precise homogenization
formulas, since the usual ones are not completely satisfactory in very heterogeneous cores (for example
when mixing UO2 and new MOX assemblies, see, e.g., Ref. [23]). The goal of this paper is to deliver precise
homogenization formulas and to mathematically justify this entire homogenization procedure.

Although the homogenization method (using asymptotic expansions) is well established in neutron
transport since the pioneering work of Larsen [22], it is only recently that its mathematical justi®cation has
been rigorously obtained for criticality problems. Indeed Malige [4,23,24] proved a complete convergence
theorem for the homogenization of Eq. (1) in the one-energy-group case (the same problem was addressed
by Dorning et al. [16] using formal asymptotic expansions). Homogenization of criticality problems has
also been rigorously justi®ed in the context of neutron transport in Refs. [2,3,7±9].

In order to state precisely our main result, we introduce some notations. Let X be a bounded open set in
RN (the nuclear reactor core), and Y � �0; 1�N the unit periodicity cell (a typical fuel assembly). Let � be a
small positive parameter which is intended to tend to zero. The domain X is assumed to be periodic of
period �Y . Since the period is decreasing, for physical reasons (namely, the mean free path of a neutron
must stay of the order of the cell size) the di�usion is scaled to be of the order of �2. Therefore, we shall
study the homogenization of the following eigenvalue problem

ÿ�2 div A
x
�

� �
r/�

� �
� R

x
�

� �
/� � l�r

x
�

� �
/� in X; /� � 0 on oX; �3�

where A�y�, R�y� and r�y� are Y -periodic functions. Let K denote the number of energy groups, i.e. the
number of equations in the system (3). The unknown ¯ux /� is a vector-valued function with K compo-
nents. The cross sections R and r are K � K matrices, and the di�usion A is a fourth-order tensor acting in
the space of K � N matrices. We make a fundamental assumption about A which is assumed to be a block-
diagonal tensor, i.e. the components of system (3) are coupled only by zero-order terms. We emphasize that
this assumption is physically not restrictive (see, e.g., Refs. [12,28]) and implies that the ®rst eigenvector is
positive as it should be since it is a density function. More details can be found in Section 2.
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A particular case (and frequently used in practice) of Eq. (3) is the two-energy-group model (K � 2)
which reads

ÿ �2 div a1

x
�

� �
r/�

1

� �
� R11

x
�

� �
/�

1 � l� r11

x
�

� �
/�

1

�
� r12/

�
2

x
�

� ��
;

ÿ �2 div a2

x
�

� �
r/�

2

� �
� R22

x
�

� �
/�

2 � R21

x
�

� �
/�

1;

/�
1 � /�

2 � 0 on oX;

�4�

where all coe�cients are positive Y -periodic functions. The ®rst component /�
1 is the fast neutrons ¯ux, and

the second one /�
2 is the slow (or thermal) neutrons ¯ux. System (4) can be physically interpreted as follows:

only fast neutrons are created by ®ssion, while slow neutrons are generated by the slackening of fast
neutrons, but both groups contribute to the ®ssion source term.

Our main result is the following homogenization theorem that we state in a loose way in order to avoid
technicalities (for a rigorous statement, see Theorem 3.2 below).

Theorem 1.1. Let l1 be the smallest eigenvalue and w�y� a matching normalized eigenvector for the cell
problem

ÿdiv A�y�rw� � � R�y�w � l1r�y�w in Y ; y ! w�y� Y -periodic: �5�

Let l�;m be the mth eigenvalue of Eq. (3) and /�;m an associated normalized eigenvector. Then, under a mild
symmetry assumption for the coefficients (see Eq. (18)),

/�;m�x� � um�x�w x
�

� �
� o�1� and l�;m � l1 � �2mm � o �2

ÿ �
;

where mm is the mth eigenvalue of the following homogenized one-group diffusion equation and um is an
associated scalar eigenvector

ÿdiv Dru
ÿ � � mru in X; u � 0 on oX; �6�

where D is a constant positive definite N � N matrix, and r is a strictly positive constant, depending only on the
coefficients A, R and r (their precise values may be found in Section 3).

This result justi®es, in the case of a periodic medium, the aforementioned engineering procedure of ¯ux
factorization and averaging and it delivers new homogenized formulas (at least to our knowledge). Remark
that the microscopic ¯ux w is still the solution of a multi-group di�usion problem, but the macroscopic ¯ux
u is indeed a scalar ¯ux, solution of a one-group di�usion equation. As already mentioned, in the one-group
case K � 1, Theorem 1.1 has ®rst been proved by Malige and his co-workers [4,23,24]. He also obtained
formally the correct result in the two-group case K � 2 by using two-scale asymptotic expansions. Even-
tually, Refs. [23,24] contain many numerical computations demonstrating the e�ciency of such an
homogenization rule.

The paper is organized as follows. In Section 2 we give detailed assumptions on the coe�cients and we
recall regularity and existence results for systems (3) and (4). Such regularity results are needed to justify the
factorization in the product of two terms. Section 3 is devoted to a precise statement of Theorem 1.1 and to
its proof upon admitting the homogenization results of Section 5. Section 4 delivers energy-type formulas
and a priori estimates, which implies the existence of two-scale limits. Then, Section 5 focus on the ho-
mogenization of a simpler associated source problem. Here, we use the two-scale convergence introduced in
Refs. [1,26]. Finally, in Section 6 we obtain further corrector results.
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2. Existence and regularity results

The goal of this section is to give precise assumptions on the coe�cients of the multi-group di�usion
system and to establish some results concerning the existence and the regularity of its eigenvalues and
eigenvectors. Most of the following theorems are variations of known results, and their proof is skipped or
merely sketched.

Recall that N is the space dimension, and K is the number of energy groups. We adopt the convention
that latin indices i; j belong to f1; . . . ;Ng, i.e. they refer to spatial coordinates, while greek indices a; b vary
in f1; . . . ;Kg, i.e. they refer to the group label.

Throughout this paper we shall use the following assumptions without mentioning them again. The ®rst
one is concerned with the di�usion tensor A. Denoting by �/a�16 a6K the components of the vector-valued
¯ux /, its gradient is the K � N matrix r/ de®ned by its entries

r/ � o/a

oxi

� �
16 a6K; 16 i6N

:

The current Ar/ is also a K � N matrix (its divergence has to be taken line by line as usual). We assume
that A is block diagonal, and we write A � diag�A1; . . . ;AK�, in the sense that

Ar/ � A1r/1; . . . ;AKr/K� �T; �7�
where each �Aa�16 a6K is a symmetric N � N matrix. Taking into account Eq. (7) the spectral problem (3) is
rewritten, for each 16 a6K,

ÿ�2 div Aa
x
�

� �
r/�

a

� �
�
XK

b�1

Ra;b
x
�

� �
/�

b � l�
XK

b�1

ra;b
x
�

� �
/�

b in X; /�
a � 0 on oX; �8�

which makes it a system of K equations coupled only through zero-order terms. This is a classical as-
sumption which is physically not restrictive (see, e.g., Refs. [12,28]).

Our second assumption is that all coe�cients in Eq. (8) are measurable and bounded, i.e.
Aa;ij�y�;Ra;b�y�; ra;b�y� 2 L1�Y � for 16 i; j6N and 16 a; b6K. This is the natural functional framework
since we want to model heterogeneous media having discontinuous properties. Furthermore, the di�usion
matrices are assumed to be coercive, i.e. there exists a positive constant C > 0 such that, for any
a 2 f1; . . . ;Kg and for any n 2 RN ,

Aa y� �n � nP Cjnj2 for a:e: y 2 Y : �9�
For physical reasons, all ®ssion cross-sections are non-negative ra;b P 0 (®ssion is a production process),

while the matrix R of the total (or scattering) cross-sections is diagonal dominant, i.e. Ra;a P 0, Ra;b6 0 if
a 6� b, and

PK
b�1 Ra;b P 0 (this means that there is a net absorption in each group). For mathematical

reasons (mainly for Theorem 2.3 below), we need slightly stronger assumptions, namely that there exists a
positive constant C > 0 such that, a.e. in Y ,

Ra;a P C > 0; ÿRa;aÿ1 P C > 0; Ra;b6 0 16 a; b6K; a 6� b;

r1;K P C > 0; ra;b P 0 16 a; b6K;

XK

b�1

Ra;b P C
XK

b�1

ra;b 16 a6K:

�10�

Finally, our third assumption is that the nuclear reactor core is periodic, i.e. all coe�cients A�y�, R�y�,
and r�y� are Y -periodic functions. This hypothesis is crucial for the homogenization procedure. In par-
ticular our results do not hold true any longer if the coe�cients are the product of periodic functions with
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macroscopic modulations, as for example R�x; x=�� with a Y -periodic function R�x; y�. Let us mention
however that some small perturbations of order �2 of the cross sections can be allowed (see Remark 4.3).

Remark 2.1. The second line of Eq. (10) implies that fission occurs everywhere in the nuclear reactor core.
This is not completely satisfactory since a core is a mixture of fissile materials and moderators where no fission
occurs (for example, in pressurized water reactors, fission occurs in the fuel rods but not in the water
surrounding the rods). However, as is shown in Ref. [28], if Y0 is a non-empty open subset of Y , one can replace
Eq. (10) by

Ra;a P C > 0; Ra;b6 0 16 a; b6K; a 6� b a:e: in Y ;

ra;b P 0 16 a; b6K a:e: in Y ;

PK
b�1

Ra;b P C
PK
b�1

ra;b 16 a6K a:e: in Y ;

�11�

and

ÿRa;aÿ1 P C > 0 16 a6K a:e: in Y0; r1;K P C a:e: in Y0; �12�
where the only change is in Eq. (12) which holds only in Y0. In Ref. [28] Eqs. (11, 12) is shown to yield the same
results than Eq. (10) only for the two-group diffusion system, but it is clear that all results in this section hold
true also with this weaker assumption for any K P 2.

In the one-energy group case K � 1, since the di�usion matrix A is symmetric, Eq. (3) de®nes a compact
self-adjoint operator acting in L2�X�. Therefore, for any ®xed � > 0, a well-known result asserts the exis-
tence of solutions to Eq. (8) and its regularity.

Theorem 2.2. Let the number of group be K� 1. Under assumptions Eqs. (7), (9), and (10), problem (8) has a
countable number of real positive eigenvalues. The first (smallest) eigenvalue is simple and has an associated
positive eigenfunction in X. Furthermore, all eigenfunctions belong to H 1

0 �X� \ C0;s�X� for some s > 0.

Theorem 2.2 is classical. The fact that the spectrum is a countable discrete set is due to the compactness
of the operator. The regularity result may be found for e.g. in Ref. [17]. The fact that the minimum ei-
genvalue is simple and has a positive eigenfunction is a consequence of the Krein±Rutman Theorem [21].
The same result holds also for the periodic problem (5).

The generalization of Theorem 2.2 to the multi-group case K P 2 is less obvious. In particular, system (8)
is not self-adjoint. We ®rst address the existence of solutions, and then turn to the regularity question.

Theorem 2.3. Under assumptions Eqs. (7), (9), and (10), problem (8) admits at least one, and at most a
countable number of eigenvalues (possibly complex) with associated eigenvectors in H 1

0 �X�K . Furthermore, the
first eigenvalue of Eq. (8) (i.e. the smallest in modulus) is real and simple, and its corresponding eigenvector can
be chosen to be positive in X (i.e. each component is positive).

Remark 2.4. Throughout the paper, we label the eigenvalues by increasing order of their modulus, and we
normalize the eigenvectors such that their L2-norm is equal to 1.

Theorem 2.3 has ®rst been proved by Habetler and Martino [18], with the help of Green functions in-
equalities given by Stampacchia and of the Krein±Rutman Theorem (see Refs. [30,21,5]). A modern ex-
position of this result may be found in the book of Planchard [28]. In this later reference, Theorem 2.3 is
shown to hold true also if assumption Eq. (10) is replaced by Eqs. (11) and (12) which is weaker but more
realistic (a complete proof is only given in the 2-energy-groups case).

The factorization principle described in the introduction is based on the following eigenvalue problem in
the unit cell Y (the so-called in®nite medium equation)
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ÿdiv A�y�rw� � � R�y�w � l1r�y�w; y ! w�y� Y -periodic; �13�
where l1 is the ®rst eigenvalue. In order to compute the homogenized coe�cients, we also need to in-
troduce the adjoint cell problem of Eq. (13)

ÿdiv A�y�rw�� � � R��y�w� � l1r��y�w�; y ! w��y� Y -periodic; �14�
where R� and r� are the adjoint or transposed matrices of R and r, respectively, and l1 is the ®rst ei-
genvalue (the same as for Eq. (13)). Throughout this paper we denote by �wa�16 a6K (respectively
�w�a�16 a6K) the components of the eigenvector w of Eq. (13) (respectively w� of Eq. (14)) associated to the
®rst eigenvalue l1. Of course, for these two cell problems an obvious generalization of Theorem 2.3 holds.

Corollary 2.5. Under assumptions (7), (9), and (10), the cell problems (13) and (14) admit at least one, and at
most a countable number of eigenvalues with associated eigenvectors in H 1

#�Y �K . Furthermore, they have a
common first eigenvalue l1 which is real and simple, and its corresponding eigenvectors w and w� can be
chosen to be positive in Y .

We recall that H 1
#�Y � is the subspace of H 1

loc�RN � made of Y -periodic functions. We now turn to the
regularity of the eigenfunctions. Since this extra smoothness is required in the sequel only for the ®rst
eigenfunctions of Eqs. (13) and (14), we state this result only for these cell problems.

Proposition 2.6. The eigenfunctions of the cell problems (13) and (14) are H�older continuous, i.e. belong to
H 1

#�Y � \ C0;s
# �Y �

� �K
for some s > 0.

The proof of Proposition 2.6 is based on regularity results due to Stampacchia [30] and a boot-strap
argument (starting from L2�Y � the regularity of the right hand side is iteratively increased up to Lq�Y � with
q > N=2 which implies that the solution is continuous). The argument is quite standard so we omit it. Of
course, assumption (7) on the diagonal character of the di�usion tensor is crucial here.

3. Main results

This section is devoted to a presentation of our main results of homogenization. We begin by recalling
the homogenization theorem proved by Malige [4,23] in the one-group case K � 1. It is simpler to state in
this case, and its proof is both simple and enlighting (see below).

Theorem 3.1. Assume that the number of energy group is K � 1. Let w and l1 be the first eigenvector and
eigenvalue of the cell problem (13). For m P 1, let l�;m and /�;m be the mth eigenvalue and normalized
eigenvector of Eq. (8). Then,

/�;m�x� � u�;m�x�w x
�

� �
and l�;m � l1 � �2mm � o �2

ÿ �
;

where, up to a subsequence, the sequence u�;m converges weakly in H 1
0 �X� to um, and �mm; um� is the mth

eigenvalue and eigenvector for the homogenized problem

ÿdiv Dru
ÿ � � mru in X; u � 0 on oX: �15�

The homogenized coefficients are given by

Dij � 1

jY j
Z

Y
A�y�w2�y� dij

�
ÿ ohj

oyi
�y�
�

dy and r � 1

jY j
Z

Y
r�y�w2�y�dy; �16�

where the functions hjÿ �
16 j6N

are defined by

ÿdiv A�y�w2�y� rhjÿÿ � ej

�� � 0 in Y ; y ! hj�y� Y -periodic: �17�
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In Theorem 3.1 the convergence of the eigenvectors hold up to the extraction of a subsequence because
of a possible multiplicity of the limit eigenvalue. However, if the limit eigenvalue is simple (which is the case
for the ®rst one), then there is no need to extract a subsequence. The simplicity of the one-group case K � 1
comes from the fact that it is a scalar self-adjoint problem.

In the multi-group case K P 2, system (8) is not self-adjoint. A simple generalization of Theorem 3.1
would be that the ®rst direct and adjoint eigenvectors of the periodic cell problem control the oscillatory
behavior of the eigenvector ¯ux /�. It turns out that this intuition is valid if the following symmetry
condition is satis®ed

XK

a�1

Z
Y

Aa�y� warw�a
ÿ ÿ w�arwa

�
dy � 0; �18�

where �wa�16 a6K (respectively �w�a�16 a6K) are the components of the ®rst eigenvector w of Eq. (13) (re-
spectively w� of Eq. (14)). Condition (18) is obviously ful®lled if system (8) were self-adjoint. As observed by
Malige in [23], it is also veri®ed if all cross sections and di�usion coe�cients are symmetric functions in the
unit cell Y � �0; 1�N (more precisely, every coe�cient should have a cubic symmetry, i.e. be symmetric with
respect to all hyperplanes parallel to the axes and passing through the middle of the cell). Indeed, in such a
case wa and w�a have also cubic symmetry and each integral in Eq. (18) vanishes. However, it is not di�cult
to build, at least numerically, examples for which Eq. (18) does not hold (and Theorem 3.2 is clearly
wrong).

Theorem 3.2. Assume that the symmetry condition (18) is satisfied. Let �wa�16 a6K (respectively �w�a�16 a6K )
be the components of the eigenvector w of Eq. (13) (respectively w� of Eq. (14)) associated to the first
eigenvalue l1. Let /�;m; l�;m� � be the mth eigenpair of system (8). Then,

/�;m
a � u�;ma �x�wa

x
�

� �
8 a 2 f1; . . . ;Kg; l�;m � l1 � �2mm � o �2

ÿ �
;

where, up to a subsequence, each component u�;ma converges weakly in H 1
0 �X� to the same limit um which is an

eigenvector associated to the mth eigenvalue mm of the scalar homogenized problem

ÿdiv Dru�x�ÿ � � mru�x� in X; u � 0 on oX: �19�
The homogenized coefficients are

r �
XK

a;b�1

Z
Y

ra;b�y�wb�y�w�a�y�dy; �20�

and D is a N � N positive definite matrix defined by its entries

Di;j �
XK

a�1

Z
Y

Aawaw
�
ar yi� � hi;a�r yj

ÿ � hj;a

�
dy

�
XK

a;b�1

Z
Y

1

2
w�awb l1ra;b

ÿ ÿ Ra;b

�
hi;a

ÿ ÿ hi;b

�
hj;a

ÿ ÿ hj;b

�
dy; �21�

where, for each 16 i6N , the components hi;a� �16 a6K are defined by

hi;a � fi;a

wa

;

and fi � fi;a

ÿ �
16 a6K

is the solution of

ÿdiv Ar�y�rfi� � � R�y�fi � l1r�y�fi � Zi in Y ; y ! fi�y� Y -periodic; �22�
where the right hand side Zi has components Zi;a � �1=wa�y��div�Aa�y�w2

a�y�ryi� for 16 a6K.
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Remark 3.3. The homogenized problem (19) has been formally found by Malige [23] using the heuristic
method of two-scale asymptotic expansions. Theorem 3.2 justifies rigorously this result by furnishing a con-
vergence proof.

It is interesting to notice that in the multigroup model, as long as a symmetry condition is fulfilled, the
macroscopic behavior is described by a single diffusion equation. This explain why one-energy-group models
are still popular in reactor physics, where the symmetry condition is usually observed; the global trend of the
power distribution in the reactor is indeed given by a homogenized one-energy-group model. The cost of such a
simplification is merely a less accurate local description of the fluxes.

Remark 3.4. The convergence of the eigenvectors holds up to a subsequence because the corresponding ho-
mogenized eigenvalue may be multiple. However, for the first eigenvalue which is simple, a suitable normal-
ization of the eigenvector shows that the entire sequence of eigenvectors converges.

Observe also that it was not proved that the original system (8) has an infinite number of eigenvalues.
However, since the homogenized diffusion equation (19) does so, Theorem 3.2 proves that, as � goes to 0, the
number of eigenvalues for Eq. (8), at least, converges to infinity.

The homogenized diffusion matrix D, given in Eq. (21), may be defined by several different formulae (see
Proposition 5.6 and 5.7) which are all equivalent, at least for the symmetric part of D, which is the only
relevant information in the diffusion equation (19).

Remark also that Eq. (22) is of the same type as the cell eigenvalue problem (13), but with a source term.
Therefore, it admits a solution provided that the Fredholm alternative holds, i.e. the source term must be
orthogonal to the adjoint first eigenvector w�. This is precisely the symmetry condition (18).

Without the symmetry condition (18), we cannot hope to obtain a similar result as is shown by the next
Proposition. However, a recent note [13] solves completely the case when Eq. (18) is not satis®ed.

Proposition 3.5. Assume that the symmetry condition (18) is not fulfilled. Let l�;1 be the first eigenvalue of
system (8), and l1 the first one of the cell problem (13). Then,

lim
�!0

l�;1 ÿ l1

�2
� �1:

We now turn to the proof of the above results. As already said, we begin with the one-group case which
is much simpler.

Proof of Theorem 3.1. In the one-energy group case, Eq. (8) being self-adjoint, its eigenvalues are char-
acterized by the min-max formula

l�;m � min
Wm�H1

0
�X�

dim Wm�m

max
/2Wm
/6�0

�2
R

X A x
�

ÿ �jr/j2 dx� RX R x
�

ÿ �
/2 dxR

X r x
�

ÿ �
/2 dx

:

For any function / 2 H 1
0 �X�, we may de®ne

u�x� � /�x�
w x

�

ÿ � ; �23�

since the ®rst eigenvector w of the cell problem (13) is bounded from below by a positive constant (by virtue
of Proposition 2.6 it is a continuous function on Y and it is positive). A priori, u de®ned by Eq. (23) belongs
merely to L2�X�, but a simple computation shows that

�2
R

X A x
�

ÿ �jr/j2 dx� RX R x
�

ÿ �
/2 dxR

X r x
�

ÿ �
/2 dx

� l1 � �2

R
X A x

�

ÿ �
w2 x

�

ÿ �jruj2 dxR
X r x

�

ÿ �
w2 x

�

ÿ �
u2 dx

;

which proves that u is indeed a function of H 1
0 �X�. Furthermore, this change of variables yields that if

�l�;m;/�;m� is the mth eigenpair of Eq.(8), then �m�;m; u�;m�, de®ned by
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m�;m � l�;m ÿ l1

�2
and u�;m�x� � /�;m�x�

w x
�

ÿ � ;
is also the mth eigenpair of

ÿdiv D
x
�

� �
ru��x�

� �
� m�s

x
�

� �
u��x� in X; u� � 0 on oX; �24�

where D�x=�� � w2�x=��A�x=��, and s�x=�� � r�x=��w2�x=��. Because w is bounded and strictly positive, D
and s satisfy the same hypothesis as A and r. The homogenization of problem (24) is classical (see, for
example, Ref. [20]). Its eigenvalues m�;m, labeled by increasing order, and the associated normalized
eigenvectors u�;m satisfy

m�;m; u�;m� � ! mm; um� � in R� H 1
0 �X�weak

ÿ �
;

where mm; um� � are the mth eigenpair of the homogenized problem (15). The convergence of the eigenvectors
hold up to a subsequence because of the possible multiplicity of the limit eigenvalue. �

We now focus on the proof of the homogenization process in the multi-group case K P 1. Our strategy is
the following: we reduce the homogenization of the spectral problem to that of an equivalent system with a
®xed source term. Then, upon admitting the homogenization results of Section 5 concerning the homog-
enization of this source problem, we prove all the above theorems. In order to simplify the notations, it is
understood that we focus on a given (sub)sequence of eigenvalues with the same ordering m. Hence, indices
m will be dropped in the sequel.

Proposition 3.6. For 16 a6K, let Ta and T �a be the following linear operators

Ta : H 1
0 �X� ! H 1

0 �X� and T �a : H 1
0 �X� ! H 1

0 �X�
/�x� ! �/�x�� wa

x
�

ÿ �ÿ ��
/�x� ! �/�x�� w�a

x
�

ÿ �ÿ ��
then, Ta and T �a are bounded, bicontinuous operators.

Proof. By virtue of Corollary 2.5 and Proposition 2.6, we know that there exist positive constants C > c > 0
such that C > wa�y� > c for all y 2 Y . Consequently, for all / 2 H 1

0 �X�, de®ning u � Ta /� �, we have

ck/kL2�X�6 kukL2�X�6Ck/kL2�X�:

Hence Ta is an homeorphism in L2�X�. On the other hand,Z
X

Aar/ � r/ �
Z

X
Aar uwa� � � r uwa� �

�
Z

X
Aa�wa�2ru � ru�

Z
X

Aarwa � r�u2wa�: �25�

Using Eq. (13), de®ning w, yieldsZ
X

Aarwa � r�u2wa�
���� ���� � 1

�2

XK

b�1

Z
X

ÿ����� ÿ Ra;b � l1ra;b

�
wbwau2

�����6 C
�2
kuk2

L2�X�: �26�

Hence, by coercivity and boundedness of Aa, we deduce from Eqs. (25) and (26) that there exists a constant
C > 0 such that

1

C
k/k2

H1
0
�X�

�
ÿ 1

�2
kTa /� �k2

L2�X�

�
6 kTa /� �k2

H1
0
�X�;

kTa /� �k2
H1

0
�X�6C k/k2

H1
0
�X�

�
� 1

�2
kTa /� �k2

L2�X�

�
;

which concludes the proof for Ta. The proof for T �a is similar. �
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Proposition 3.7. The multigroup eigenvalue problem (8) is equivalent to the following eigenvalue problem

ÿdiv D
x
�

� �
ru�

� �
� 1

�2
Q� u�� � � m�B

x
�

� �
u� in X; u� 2 H 1

0 �X�K ; �27�

where the components �u�a�16 a6K of u� are defined by

u�a�x� �
/�

a x� �
wa

x
�

ÿ � ; �28�

the eigenvalue m� is defined by

m� � l� ÿ l1

�2
;

D�y� is a Y -periodic fourth-order tensor which is block diagonal, i.e. D � diag�D1; . . . ;DK� with

Da�y� � wa�y�w�a�y�Aa�y� 8a 2 1; . . . ;K; �29�
B is a K � K Y -periodic matrix with entries

Ba;b�y� � ra;b�y�wb�y�w�a�y�;

and Q� is a continuous linear operator from H 1
0 �X�K into Hÿ1�X�K , defined by Eq. (36). Furthermore, there

exists two positive constants C > c > 0 (independent of �) such that, for any u 2 H 1
0 �X�K ,

C
XK

a;b�1

kua ÿ ubk2
L2�X�P

Z
X

Q� u� � � u dx P c
XK

a;b�1

kua ÿ ubk2
L2�X�: �30�

Remark 3.8. If we take into account Remark 2.1, and allow cross-sections to be positive merely on Y0bY , then
Proposition 3.7 is true if Eq. (30) is replaced by

C
XK

a;b�1

kua ÿ ubk2
L2�X��P

Z
X

Q� u� � � u dx P c
XK

a;b�1

kua ÿ ubk2
L2�X��; �31�

where X� is a periodic domain defined by

X� �
[N���
i�1

Y i
0;� \ X; �32�

with

Y i
0;�

� �
i�1;::;N���

the collection of homothetics of Y0, corresponding to a cubic mesh of size � covering X, where cross-sections are
positive.

Proof. Let us ®rst prove that u� de®ned by Eq. (28) is a solution of Eq. (27). We write the variational
formulation of Eq. (8), factorizing its solution /� in u�a�x�wa

x
�

ÿ �
and the test function in va�x�w�a x

�

ÿ �
,

�2
XK

a�1

Z
X

Aa
x
�

� �
r�u�awa� � r�vaw

�
a� �

XK

a;b�1

Z
X

Ra;b
x
�

� �
u�awavaw

�
a � l�

XK

a;b�1

Z
X

ra;b
x
�

� �
u�awavaw

�
a:

Remark that this factorization is licit by virtue of Proposition 3.6. Developing the above equation yields
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Z
X

D
x
�

� �
ru� � rv� 1

�2
q u�;ru�; v;rv� � � m�

Z
X

B
x
�

� �
u� � v;

where v is a function in H 1
0 �X�K of components �va�16 a6K , and q is de®ned by

q u�;ru�; v;rv� � � �2
XK

a�1

Z
X

Aawavarw�a � ru�a �
XK

a;b�1

Z
X

Ra;bwau�avaw
�
a

� �2
XK

a�1

Z
X

Aau�avarwa � rw�a � �2
XK

a�1

Z
X

Aau�aw
�
arwa � rva

ÿ
XK

a;b�1

l1
Z

X
ra;bwbw

�
au�bva: �33�

The last four terms in Eq. (33) also arise in the variational formulation of the periodic eigenvalue
problem (13), de®ning w, rescaled to size � with the test function �vau�aw

�
a�. Using this variational formu-

lation we obtain, after some algebra, a simpli®ed formula for q

q u�;ru�; v;rv� � � �
XK

a�1

Z
X

vaJa
x
�

� �
� ru�a �

Z
X

~Q
x
�

� �
u� � v;

with

Ja�y� � Aa�y� wa�y�ryw
�
a�y�

ÿ ÿ w�a�y�rywa�y�
�
; �34�

and ~Q is the Y -periodic K � K matrix de®ned by its entries

~Qa;b�y� � Ra;b�y�
ÿ ÿ l1ra;b�y�

�
wb�y�w�a�y�6 0 if a 6� b; ~Qa;a�y� � ÿ

XK

b�1
b 6�a

~Qa;b�y�P 0: �35�

Therefore, q can be rewritten

q u�;ru�; v;rv� � �
Z

X
Q� u� � � vdx;

where, upon de®ning a second order tensor J with lines Ja, the operator Q� is de®ned by

Q��u� � �J x
�

� �
� ru� ~Q

x
�

� �
u: �36�

The matrix ~Q is clearly bounded, but it is not clear whether J belongs or not to L1�X�. Thus, in order to
prove that Q� is continuous, we have to rely on Proposition 3.6. Introducing homomorphisms P and P �

de®ned by,

P : H 1
0 �X�

ÿ �K ! H 1
0 �X�

ÿ �K
and P � : H 1

0 �X�
ÿ �K ! H 1

0 �X�
ÿ �K

ua ! Tÿ1
a ua ua ! T �a

ÿ �ÿ1
ua

the above computation in reverse order shows thatZ
X

Q��u� � v dx � �2

Z
X

A
x
�

� �
r�Pu� � r�P �v� ÿ �2

Z
X

D
x
�

� �
ru � rv

�
Z

X
R

x
�

� �
Pu � P �vÿ l1

Z
X

B
x
�

� �
u � v

6CkukH1�X�KkvkH1�X�K ;
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which proves that Q� is bounded and continuous from H 1
0 �X�K into Hÿ1�X�K . Finally, to obtain inequalities

(30), we remark that the cell eigenvalue problems (13) and (14) implies, for any 16 a6K,

ÿdivyJa�y� �
XK

b�1

~Qb;a�y� �
XK

b�1

~Qa;b�y�: �37�

Multiplying Eq. (37) by u2
a, we deduce

XK

a�1

Z
X

uaJa � rua � 1

2

XK

a;b�1

Z
X

~Qa;bu2
a

�
ÿ ~Qb;au2

a

�
:

Therefore, using Eqs. (35) and (36), we obtainZ
X

Q��u� � udx �
XK

a;b�1

Z
X

~Qa;b

x
�

� �
ubua

��
ÿ uaua � 1

2
u2

a

�
ÿ 1

2
~Qb;a

x
�

� �
u2

a

�

� ÿ 1

2

XK

a;b�1

Z
X

~Qa;b

x
�

� �
ua

ÿ ÿ ub

�2
: �38�

Remark that, in view of Eq. (10), for all a 6� b, ~Qa;b6 0 and, since jaÿ bj � 1 implies ÿ ~Qa;b > q > 0,Z
X

Q��u� � udx P
q
2

XKÿ1

a�1

kua ÿ ua�1k2 � q
2
ku1 ÿ uKk2 P

q
2K2

XK

a;b�1

kua ÿ ubk2 P 0;

which is the desired result. �

Unlike in the one-group case (see Theorem 3.1), the multi-group problem (27) is not self-adjoint.
Therefore, we can not use the min-max principle to characterize the eigenvalues. Rather, we associate to
this equation a linear operator S�. Studying the convergence of S� will allow us to deduce a convergence
result for the spectrum of Eq. (27). Let us de®ne a linear operator S� by

S� : L2�X�K ! L2�X�K
f � fa� �16 a6K ! u � ua� �16 a6K unique solution of

ÿdiv D x
�

ÿ �ru
ÿ �� 1

�2
Q��u� � f in X;

u � 0 on oX:

� �39�

Remark that the eigenvalue problem (27) can be rewritten

�S��ÿ1u� � m�B
x
�

� �
u�:

Lemma 3.9. For any fixed � > 0, S� is a linear compact operator in L2�X�K .

Proof. We proved in Proposition 3.7 that Q� is a continuous operator from H 1
0 �X�K into Hÿ1�X�K , such thatR

X Q��u� � udx P 0. On the other hand, the di�usion tensor D satis®es the same type of assumptions than A.
Hence the left hand side of Eq. (39) de®nes a continuous and coercive bi-linear form in its variational
formulation. Then, the Lax±Milgram lemma shows that Eq. (39) has a unique solution, i.e. S� is well de-
®ned. The compact embedding of H 1

0 �X� in L2�X� gives the compactness of S�. �

In Section 5 we shall prove the following

Proposition 3.10. Let f � be a sequence which converges weakly in L2�X�K to f � fa� �16 a6K . Then, the se-

quence u� � S��f �� converges weakly in H 1
0 �X�K to�u0; . . . ; u0� which is defined by u0 � S�PK

a�1 fa�.
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If the symmetry condition (18) is not satisfied, then S� 0. If the symmetry condition (18) is satisfied, S is
the following compact operator

S : L2�X� ! L2�X�
f ! u unique solution of

ÿdiv Dru�x�ÿ � � f in X;
u � 0 on oX;

�
where D is the constant positive definite matrix defined by Eq. (21) (see also Proposition 5.6).

Upon admitting, for the moment, Proposition 3.10, we are in a position to prove our main results.

Proof of Theorem 3.2 and Proposition 3.5. Remark that Proposition 3.10 implies that the sequence of op-
erators S�, de®ned by Eq. (39), uniformly converges to the limit operator de®ned in L2�X�K by

f � fa� �16 a6K ! S
XK

a�1

fa

 !
; . . . ; S

XK

a�1

fa

 ! !
:

The asymptotic analysis of the eigenvalue problem (27) is truely controled by the convergence of the
sequence of operators T� de®ned by

T� : L2�X�K ! L2�X�K ; f � fa� �16 a6K ! S� B
x
�

� �
f

� �
;

namely, the eigenvalues of T� are inverse of those of Eq. (27). Introducing the averages
Ba;b �

R
Y Ba;b�y�dy which are the weak limits of the entries of the matrix B�x=��, we de®ne a limit operator T

by

T : L2�X�K ! L2�X�K ;

f � fa� �16 a6K ! S
XK

a;b�1

Ba;bfb

 !
; . . . ; S

XK

a;b�1

Ba;bfb

 ! !
:

The sequence T� converges punctually to T , but usually not uniformly. However, Proposition 3.10 im-
plies that the sequence of operators T� is collectively compact (see, e.g., Refs. [6,14]) in the sense that

8f 2 L2�X�K lim
�!0
kT��f � ÿ T �f �kL2�X�K � 0;

the set fT��f � : kf kL2�X�K 6 1; �P 0g is sequentially compact:

Then, as a consequence of Theorem 3.11 below, the mth eigenvalue of T� converges to the mth eigenvalue
of T (counted with their multiplicity). This is precisely the content of Theorem 3.2. In the particular case
when S � 0, T� converges to 0, and so does all its eigenvalues, which yields Theorem 3.5. �

Theorem 3.11 (see, e.g., Refs. [6,14]). Let Tn be a sequence of compact operators that converges to T . Assume
that Tn� �n P 1 is collectively compact and T is compact. Let l 2 C be an eigenvalue of T , of multiplicity m. Let C
be a smooth curve enclosing l in the complex plane and leaving outside the rest of the spectrum of T . Then, for
sufficiently large values of n, C encloses also exactly m eigenvalues of Tn and leaves outside the rest of the
spectrum of Tn.

4. A priori estimates

This section is devoted to establishing a priori estimates and recalling two-scale convergence results (see
Refs. [1,26]). In the sequel f � � �f �a �16 a6K denotes a bounded sequence in L2�X�K , and u� � S��f �� is the
unique solution in H 1

0 �X�K of
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ÿdiv D
x
�

� �
ru�

� �
� 1

�2
Q��u�� � f � in X; u� � 0 on oX; �40�

where Q� is a bounded linear operator from H 1
0 �X�K into Hÿ1�X�K , de®ned by Eq. (36), satisfying estimate

(30).

Lemma 4.1. The solution u� of Eq. (40) satisfies the following estimate:

XK

a�1

ku�akH1
0
�X� �

1

�

XK

a;b�1

ku�a ÿ u�bkL2�X�6C
XK

a�1

kf �akL2�X�; �41�

where C > 0 is a positive constant independent of �.

Proof. Multiplying Eq. (40) by u�, integrating by parts and using the Poincar�e inequality yields

XK

a�1

Z
X

Da
x
�

� �
ru�a � ru�a

� �1=2

� 1

�

Z
X

Q� u�� � � u�
� �1=2

6C
XK

a�1

kf �akL2�X�:

Estimate (30) satis®ed by Q� show that there exists a positive constant c > 0 such that

c
XK

a;b�1

kua ÿ ubk2
L2�X�6

Z
X

Q� u� � � udx;

and the coercivity of the matrices �Da�16 a6K allows us to conclude. �

Remark 4.2. The a priori estimates (41) are still valid when the cross-sections are not assumed
positive everywhere in Y , but only on a sub-domain Y0. Introducing the periodic domain X�, defined by Eq. (32),
we have

XK

a�1

ku�akH1
0
�X� �

1

�

XK

a;b�1

ku�a ÿ u�bkL2�X��6C
XK

a�1

kf �akL2�X�: �42�

A classical inequality in the theory of porous media homogenization (see, e.g., Ref. [19]) states that

ku�a ÿ u�bkL2�X�6C ku�a
�

ÿ u�bkL2�X�� � �kr�u�a ÿ u�b�kL2�X�N
�
: �43�

where C is a positive constant independent of �. Then, a combination of Eqs. (42) and (43) is equivalent to
Eq. (41).

Remark 4.3. If we allow a small perturbation of size �2 to the absorption section, that is, if R�x=�� is replaced
by R�x=�� � �2R0�x; x=��, these a priori estimates are valid if and only if, for any u 2 L2�X�K ,

XK

a;b�1

Z
X

R0a;b x;
x
�

� �
wb

x
�

� �
w�a

x
�

� �
ua�x�ub�x� dx P 0:

Obviously, this condition is fulfilled if R0 a positive diagonal matrix. In the general case, one needs to compute
the first eigenvectors w and w� of the cell eigenvalue problems (13) and (14) to know which perturbations are
admissible.

Let us introduce some notations that we shall use in the de®nition of the two-scale convergence. We
denote by C#�Y � the space of continuous functions in RN that are periodic of period Y , and L2

#�Y � (re-
spectively, H 1

#�Y �) the subspace of L2
loc�RN � (respectively, H 1

loc�RN �) made of Y -periodic functions. We recall
the main result of two-scale convergence (see Refs. [1,26]).
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Proposition 4.4.

(1) Let u� be a bounded sequence in L2�X�. There exists a subsequence, still denoted by �, and a limit
u0�x; y� 2 L2�X; L2

#�Y �� such that u� two-scale converges to u0 in the sense that

lim
�!0

Z
X

u��x�/ x;
x
�

� �
dx �

Z
X

Z
Y

u0�x; y�/�x; y�dxdy;

for all functions /�x; y� 2 L2 X; C#�Y �� �.
(2) Let u� be a bounded sequence in H 1

0 �X�. There exists a subsequence, still denoted by �, and limits
u�x� 2 H 1

0 �X�, u1�x; y� 2 L2�X; H 1
#�Y �=R� such that u� converges weakly to u�x� in H 1

0 �X�, andru� two-scale
converges to rxu�x� � ryu1�x; y�.

We also need a new lemma on two-scale convergence.

Lemma 4.5. Let u� be a bounded sequence in H 1
0 �X�, which converges weakly to u�x� in H 1

0 �X�, and such that
�ÿ1�u� ÿ u� is uniformly bounded in L2�X�. Then there exists u1�x; y� 2 L2�X; H 1

#�Y �� such that, up to a
subsequence,

r u�� ÿ u� * ryu1�x; y�;
1

�
u�� ÿ u� * u1�x; y�

in the sense of two-scale convergence.

Proof. Since �ÿ1 u� ÿ u� � is bounded in L2�X�, up to a subsequence, it two-scale converges to a limit u��x; y�.
On the other hand, up to a subsequence, ru� two-scale converges to rxu�x� � ryu1�x; y� with
u1�x; y� 2 L2�X; H 1

#�Y ��. Therefore, for any test function w�x; y� 2 D�X� Y �N , an integration by parts leads
to

lim
�!0

Z
X
ru�� ÿ ru�w x;

x
�

� �
dx �

Z
X

Z
Y
ryu1�x; y�w�x; y�dxdy

� ÿ
Z

X

Z
Y

u��x; y�divyw�x; y�dxdy:

We deduce that ry�u1 ÿ u�� � 0, which implies that u1 and u� di�ers by a function of x only. Since the
limit u1 is de®ned up to a function of x (only its gradient with respect to y plays a role in Proposition 4.4), we
can choose it to be equal to u�. �

In what follows, we shall use the notation 1 � f1; . . . ; 1g 2 RK . Then, if u is a scalar function, u1 denotes
the vector-valued function with K components equal to u, and 1
ru denotes the K � N matrix with
entries �ou=oxi�16 a6K; 16 i6N . Similarly, if v is a vector in RK , we denote by 1 v� � 2 RK its projection on the
vector 1, i.e.,

1 v� � � 1

K

XK

a�1

va

 !
1:

Finally, we de®ne a Hilbert space H�Y � by

H�Y � � H 1
#�Y �K= R� � 1�; �44�

which is the quotient space of H 1
#�Y �K by the subspace of constant vectors parallel to 1.

Proposition 4.6. Let u� be a sequence satisfying the a priori estimates (41) of Lemma 4.1. There exist a
subsequence and limits u0�x� 2 H 1

0 �X�, u1�x; y� 2 L2�X;H�Y �� such that, for this subsequence, u��x� converges
weakly to u0�x�1 in H 1

0 �X�K and
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ru� * 1
rxu0�x� � ryu1�x; y�;
1
�

u� ÿ 1 u�� �� �* u1�x; y� ÿ 1 u1� ��x; y� �45�

in the sense of two-scale convergence.

Proof. Estimate (41) in Lemma 4.1 shows that u� is bounded in H 1
0 �X�K . Therefore, there exists a limit

�u0
a�16 a6K such that, up to a subsequence, for all a 2 f1; . . . ;Kg, u�a converges weakly to u0

a in H 1
0 �X�. From

Proposition 4.4 we also know that there exists ~u1
a�x; y� 2 L2�X; H 1

#�Y �=R� such that, up to a subsequence,
ru�a two-scale converges to rxu0

a�x� � ry ~u1
a�x; y�. Since Eq. (41) implies that �ÿ1ku�a ÿ u�bkL2�X� is also

bounded for any a; b 2 f1; . . . ;Kg, we deduce that all limit components coincide, i.e. u0
a � u0 for any

a 2 f1; . . . ;Kg, namely u� converges weakly to u0�x�1 in H 1
0 �X�K .

Furthermore, Eq. (41) implies that �ÿ1ku�a ÿ Kÿ1
PK

b�1 u�bkL2�X� is also bounded. Then, arguing as in
Lemma 4.5, one can show that, for each a 2 f1; . . . ;Kg, there exists a function ca�x� in L2�X� such that

1

�
u�a

 
ÿ 1

K

XK

b�1

u�b

!
* ~u1

a�x; y� ÿ
1

K

XK

b�1

~u1
b�x; y� � ca�x�; �46�

in the sense of two-scale convergence. Remark that, since the sum over a of the left hand sides of Eq. (46) is
zero, the functions ca satisfyXK

a�1

ca�x� � 0:

Eventually, de®ning u1�x; y� 2 L2�X;H�Y �� by its components

u1
a�x; y� � ~u1

a�x; y� � ca�x� 8a 2 f1; . . . ;Kg;
we easily check that Eq. (46) implies the desired convergences (45). �

5. Homogenization

This section is devoted to the proof of the homogenization Theorem 3.10. As in the previous section,
u� � S��f �� denotes the unique solution of Eq. (40) with f � a bounded sequence in L2�X�K . We consider the
subsequence for which Proposition 4.6 has established the existence of two-scale limits u0�x�1 and u1�x; y�.
Our goal is to characterize these limits as the solutions of some homogenized problems. If these solutions
are unique, we shall conclude that the whole sequence u� converges, and not merely a subsequence. Let us
®rst show that u1 is uniquely determined by u0.

Proposition 5.1. Let u� be the unique solution of system (40), and let u0�x�1 and u1�x; y� be its two-scale limits
for a converging subsequence (see Proposition 4.6). Then u1�x; y� is a solution in L2�X;H�Y �� of the following
system

ÿ divy�D�y�ryu1�x; y�� � Q�u1�x; y�� � divy�D�y�1
rxu0�x�� ÿ J�y�1
rxu0�x� in Y ;

y ! u1�x; y� Y -periodic; a:e: x 2 X;
�47�

where Q is defined by Q�u� � J�y�ryu� ~Q�y�u, J and ~Q being introduced in Eqs. (35) and (34).

Proof. For a smooth Y -periodic test function /�x; y� (a vector with K components), multiplying Eq. (40) by
�/�x; x=�� and integrating by parts yieldsZ

X
D

x
�

� �
ru� � �rx/ x;

x
�

� ��
�ry/ x;

x
�

� ��
dx� 1

�

Z
X

Q��u�� � / x;
x
�

� �
dx � �

Z
X

f ��x� � / x;
x
�

� �
dx:

�48�
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Since f � and ru� are uniformly bounded in L2�X�, the right hand side and the ®rst term of the left hand
side in Eq. (48) vanishes as � goes to zero. By application of Proposition 4.6 we can pass to the two-scale
limit in the second term of the left hand side in Eq. (48)

lim
�!0

Z
X

D
x
�

� �
ru� � ry/ x;

x
�

� �
dx �

Z
X

Z
Y

D�y� 1
ÿ 
rxu0�x� � ryu1�x; y�� � ry/ x; y� � dxdy:

The last term in Eq. (48) involves Q��u�� � �J�x=��ru� � ~Q�x=��u�. Clearly, by its de®nition (34), J�y� is a
Y -periodic function and we have

lim
�!0

Z
X

J
x
�

� �
ru� � / x;

x
�

� �
dx �

Z
X

Z
Y

J�y� 1
ÿ 
rxu0�x� � ryu1�x; y�� � /�x; y�dxdy:

On the other hand, by its de®nition (35), the matrix ~Q satis®es ~Q�y�1 � 0. Thus

1

�

Z
X

~Q
x
�

� �
u� � / x;

x
�

� �
dx �

Z
X

~Q
x
�

� � u� ÿ 1 u�� �
�

� �
� / x;

x
�

� �
dx:

By the Y -periodicity of ~Q and the convergence result (45) of Proposition 4.6, we obtain

lim
�!0

Z
X

~Q
x
�

� � u� ÿ 1 u�� �
�

� �
� / x;

x
�

� �
dx �

Z
X

Z
Y

~Q�y� u1�x; y�ÿ ÿ 1 u1
ÿ ��x; y�� � /�x; y�dxdy

�
Z

X

Z
Y

~Q�y�u1�x; y� � /�x; y� dxdy;

because ~Q�y�1 � 0. Summing up the above limits, we obtain the weak form of Eq. (47). �

From Proposition 5.1 we know that u1�x; y� is a solution of Eq. (47). However, at this point, it is not clear
whether Eq. (47) admits a unique solution for any right hand side. In other words, depending on its
solvability, Eq. (47) will either deliver the value of u1 in terms of rxu0, or force rxu0 to take some precise
values. It is the purpose of the following Lemma to give a Fredholm alternative for Eq. (47).

Lemma 5.2. Let F 2 L2
#�Y �K with components �Fa�16 a6K . Let H�Y � be the Hilbert space defined by Eq. (44),

i.e. H�Y � � H 1
#�Y �K=�R� 1�. There exists a unique solution in H�Y � of

ÿdiv D�y�rw� � � Q�w� � F ; y ! w�y� Y -periodic �49�

if and only if
PK

a�1

R
Y Fa�y�dy � 0.

Proof. Let us ®rst check that, if
PK

a�1

R
Y Fa 6� 0, there exists no solution of Eq. (49) in H 1

#�Y �K . Integrating
the left hand side of Eq. (49), by periodicity we obtain thatZ

Y
div D�y�rw� �dy � 0:

Furthermore, Eq. (37) implies thatZ
Y

Jarwa dy �
XK

b�1

Z
Y

~Qa;bwa

�
ÿ ~Qb;awa

�
;

and hence, taking into account
PK

b�1
~Qa;b � 0,

XK

a�1

Z
Y

Jarwa

 
�
XK

b�1

~Qa;bwb

!
dy �

XK

a�1

XK

b�1

Z
Y

~Qa;bwa dy � 0:

G. Allaire, Y. Capdeboscq / Comput. Methods Appl. Mech. Engrg. 187 (2000) 91±117 107



Therefore,
PK

a�1

R
Y Fa � 0 is a necessary condition of existence of solution. Assuming it is now satis®ed,

we check the assumptions of the Lax±Milgram theorem for the variational formulation of Eq. (49) in
H�Y �. The bilinear form is coercive sinceZ

Y
D�y�rw � rwdy �

Z
Y

Q�w� � wdy P C
XK

a�1

Z
Y
jrwaj2 dy �

XK

a;b�1

Z
Y
�wa ÿ wb�2 dy;

where the right hand side de®nes a norm on H�Y � (its kernel in H 1
#�Y �K is the one dimensional subspace

span by 1). On the other hand, the compatibility condition on F implies that F is orthogonal to 1 which
clearly implies that the linear form /! R

Y F � /dy is continuous on H�Y �. We now check the continuity of
the bilinear form where the only di�culty is to estimate the term

R
Y Q�w� � vdy. Let us ®rst remark that the

preceding computation has shown thatZ
Y

Q�w� � 1dy � 0:

Therefore, together with the fact that Q�w� k1� � Q�w� for any k 2 R, it leads to the identityZ
Y

Q�w� � v dy �
Z

Y
Q w
�
ÿ 1

Z
Y

w
� ��

� v
�
ÿ 1

Z
Y

v
� ��

dy; �50�

for any w; v in H�Y �. Recall that in Proposition 3.7 we proved that the operator Q� is continuous from
H 1

0 �X�K into Hÿ1�X�K . Since Q� and Q are identical, up to a scaling of order �, a similar argument shows the
existence of a constant C such that, for any w; v 2H�Y �,Z

Y
Q w� � � vdy

���� ����6CkwkH1
#
�Y �KkvkH1

#
�Y �K :

Using Eq. (50) leads toZ
Y

Q w� � � vdy

���� ����6Ckwÿ 1

Z
Y

w
� �

kH1
#
�Y �Kkvÿ 1

Z
Y

v
� �

kH1
#
�Y �K ;

where kwÿ 1�RY w�kH1
#
�Y �K is just the norm in H�Y �. Finally, application of the the Lax-Milgram theorem in

H�Y � yields the existence and uniqueness of a solution for Eq. (49). �

Proposition 5.3. Let u0�x� 2 H 1
0 �X� and u1�x; y� 2 L2�X;H�Y �� be the limits satisfying system (47). Then, if

XK

a�1

Z
Y

Ja�y�dy 6� 0;

necessarily u0�x� � 0 in X. Conversely, if

XK

a�1

Z
Y

Ja�y�dy � 0; �51�

then u1�x; y� is explicitly given by its components

u1
a�x; y� �

XN

i�1

hi;a�y� ou0

oxi
�x�;

where, for 16 i6N , hi � �hi;a�16 a6K is the unique solution in H�Y � of

ÿdiv D�y�r hi�y��� � yi1�� � Q�hi�y� � yi1� � 0 y ! hi�y� Y -periodic: �52�
Remark 5.4. Condition (51) is nothing but our previous symmetry condition (18). Here, it appears as a
Fredholm alternative for the cell problem (49).
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Proof. According to Lemma 5.2, the Fredholm alternative for Eq. (47) is

XK

a�1

Z
Y

Ja�y�dy

 !
� ru0�x� � 0 a:e: x 2 X:

If Eq. (51) is not satis®ed, it implies that, at least, one component ofru0 vanishes throughout X. Because of
the homogeneous Dirichlet boundary condition, it yields that u0�x� � 0 in X. If Eq. (51) is satis®ed, then
Lemma 5.2 states that Eq. (47) admits a unique solution u1. By linearity it is easily seen to coincide with the
prescribed combination of the functions hi. �

Remark 5.5. The adjoint of Q, noted Q� is given by

Q��u� � ÿJ�y� _ruÿ divJ�y� � u� ~Q��y�u;
where ~Q� is the transposed matrix of ~Q. Using identity (37) we rewrite Q� under the following form

Q��u� � ÿJ�y�ru� ~Qa�y�u;

where ~Q a has the same off-diagonal entries than ~Q�, and has diagonal entries such that, for all 16 a6K,

XK

b�1

~Qa
a;b � 0:

Both operators Q and Q� have the same kernel, span by 1. Thus the existence and uniqueness result of Lemma
5.2 extends easily to the same equation with Q replaced by Q�. We therefore introduce adjoint functions h�i �y�,
16 i6N , defined as the unique solution in H�Y � of

ÿdiv D�y�r h�i �y�
ÿÿ � yi1

��� Q��h�i �y� � yi1� � 0; y ! h�i �y� Y -periodic: �53�

Proof of Proposition 3.10. The principle of this proof is in the spirit of the so-called energy method, in-
troduced by Tartar (see, e.g., Refs. [11,25]). We use an oscillating test function that has the same structure
than the two-scale limit of u�. Let u�x� be a smooth scalar function with compact support in X. De®ne the
vector-valued function /�x� � u�x�1 and /1�x; y� by its K components

/1
a�x; y� �

XN

i�1

h�i;a�y�
ou
oxi
�x�: �54�

By rescaling Eq. (53), h�i;a�x=�� satis®es in RN the following equation:

ÿ�div D
x
�

� �
r �h�i

x
�

� ���
� xi

��
ÿ J

x
�

� �
r �h�i

x
�

� ��
� xi

�
� ~Qa x

�

� �
h�i

x
�

� �
� 0: �55�

Multiplying Eq. (40), satis®ed by u�, by /�x� � �/1�x; �x=��� and integrating by parts leads toZ
X

D
x
�

� �
ru��x� � r /�x�

�
� �/1 x;

x
�

� ��
dx� 1

�2

Z
X

Q��u���x� � /�x�
�

� �/1 x;
x
�

� ��
dx

�
Z

X
f ��x� � /�x�

�
� �/1 x;

x
�

� ��
dx:

The right hand side converges toZ
X

f �x� � /�x�dx �
Z

X

XK

a�1

fa�x�
 !

u�x�dx
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as � goes to zero, and

lim
�!0

�

Z
X

D
x
�

� �
ru��x� � rx/

1 x;
x
�

� �
dx � 0:

Therefore the above equation writesZ
X

D
x
�

� �
ru��x� � r/�x�

�
�ry/

1 x;
x
�

� ��
dx� 1

�2

Z
X

u��x� � Q�� /�x�
�

� �/1 x;
x
�

� ��
dx

�
Z

X
f �x� � /�x�dx� r���; �56�

where r��� is a bounded quantity going to zero with �. Using the de®nition of Q�, i.e.
Q��u� � ÿJ�y�ru� ~Qa�y�u and de®nition (54) of /1, the left hand side of Eq. (56) becomesXN

i�1

XK

a�1

Z
X

Da
x
�

� �
ru�a �

ou
oxi
rxi

�
� ryh

�
i;a

� � x
�

� ��
dxÿ 1

�

XN

i�1

XK

a�1

Z
X

u�aJa
x
�

� �
� ou

oxi
rxi

�
� ryh

�
i;a

� � x
�

� ��
dxÿ

XN

i�1

XK

a�1

Z
X

u�aJa
x
�

� �
� r ou

oxi
h�i;a

x
�

� �
dx

� 1

�2

Z
X

~Qa x
�

� �
1 � uu� dx� 1

�

XN

i�1

Z
X

~Qa x
�

� �
h�i

x
�

� �
� ou
oxi

u� dx: �57�

Remark that
R

X
~Qa�x=��1 � uu� dx � 0, since ~Qa1 � 0. On the other hand, multiplying Eq. (55), satis®ed

by h�i , by �ou=oxi�u�, we obtainXK

a�1

Z
X

Da
x
�

� �
rxi

�
� ryh

�
i;a

� � x
�

� ��
� ou

oxi
ru�a

�
� u�ar

ou
oxi

� ��
dx

ÿ 1

�

XK

a�1

Z
X

Ja
x
�

� �
rxi

�
� ryh

�
i;a

� � x
�

� ��
� ou
oxi

u�a dx

� 1

�

Z
X

~Qa x
�

� �
h�i

x
�

� �
� ou
oxi

u�a dx � 0: �58�

Thus, using Eq. (57) in Eq. (56) and subtracting to it Eq. (58) yields

ÿ
XN

i�1

XK

a�1

Z
X

Da
x
�

� �
rxi

�
� ryh

�
i;a

� � x
�

� ��
� u�ar

ou
oxi

� �
dx

ÿ
XN

i�1

XK

a�1

Z
X

Ja
x
�

� �
� r ou

oxi

� �
h�i;a

x
�

� �
u�a dx �

Z
X

XK

a�1

fa

 !
udx� r���:

All terms in the left hand side of this last expression are products of u�, which converges strongly in L2 X� �
towards u0�x�1, against periodically oscillating functions that converge weakly in L2�X�. Taking the limit as
� goes to zero, and after an integration by parts, it yieldsXN

i;j�1

Z
X

ou0

oxj
�x� ou

oxi
�x�
XK

a�1

Z
Y

h�i;a�y�Ja�y� � ryj dy dx�
XN

i;j�1

Z
X

ou0

oxj
�x� ou

oxi
�x�

�
XK

a�1

Z
Y

Da�y�r�yi � h�i;a�y�� � ryj dy dx �
Z

X

XK

a�1

fa�x�u�x�dx: �59�

Introducing a matrix ~D de®ned by its entries

~Di;j �
XK

a�1

Z
Y

Da�y�r yi

��
� h�i;a�y�

�
� ryj � h�i;a�y�Ja�y� � ryj

�
dy; �60�
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Eq. (59) is just a variational formulation of

ÿdiv ~Dru0�x�
� �

�
XK

a�1

fa�x� in X; u0 2 H 1
0 �X�: �61�

In Proposition 5.6 we shall assert that the constant matrix ~D has a positive de®nite symmetrical part.
Therefore, there exists a unique solution u0, which ®nishes the proof of Proposition 3.10. �

The homogenized matrix ~D, introduced in the above proof, is not, at ®rst look, the one given in the
statement of Theorem 3.2 and denoted by D. In particular, the matrix ~D is not symmetric as is D. This is not
a problem since only the symmetric part of ~D plays a role in the homogenized di�usion Eq. (61). The
purpose of the next Proposition is to show that the symmetric part of ~D is positive de®nite, which implies
that the homogenized di�usion Eq. (61) is well-posed. Then, Proposition 5.7 shows that this symmetric part
of ~D coincides with D.

Proposition 5.6. Let ~D s denote the symmetric part of ~D, defined by Eq. (60). An equivalent formula for
~D s is

~Ds
i;j �

XK

a�1

Z
Y

Da�y�r yi

�
� h�i;a�y�

�
� r yj

�
� h�j;a�y�

�
dy

ÿ 1

2

XK

a;b�1

Z
Y

~Qa;b�y� h�i;a�y�
�

ÿ h�i;b�y�
�
� h�j;a�y�
�

ÿ h�j;b�y�
�

dy: �62�

In particular, ~Ds is positive definite.

Proof. Multiplying de®nition (53) of h�i by h�j and integrating by parts leads to

XK

a�1

Z
Y

Dar yi

�
� h�i;a

�
� rh�j;a dy ÿ

XK

a�1

Z
Y

Jar yi

�
� h�i;a

�
� h�j;a dy �

Z
Y

~Qah�i � h�j dy � 0:

Therefore, Eq. (60) is equivalent to

~Di;j �
XK

a�1

Z
Y

Dar yi

�
� h�i;a

�
� r�yj � h�j;a�dy

�
Z

Y
Q� h�i
ÿ � � h�j dy �

XK

a�1

Z
Y

Jaryj � h�i;a
�

ÿ Jaryi � h�j;a
�

dy;

and its symmetrical part is

~Ds
i;j �

XK

a�1

Z
Y

Dar yi

�
� h�i;a

�
� r yj

�
� h�j;a

�
dy � 1

2

Z
Y

Q�� � Q� h�i
ÿ � � h�j dy:

We proved in Proposition 3.7 thatZ
Y

Q�w� � w dy � ÿ 1

2

XK

a;b�1

Z
Y

~Qa;b wa

ÿ ÿ wb

�2
dy:

Thus, taking the corresponding symmetric bilinear form we obtain

1

2

Z
Y

Q�� � Q� h�i
ÿ � � h�j dy � ÿ 1

2

XK

a;b�1

Z
Y

~Qa;b h�i;a
�

ÿ h�i;b
�
� h�j;a
�

ÿ h�j;b
�

dy;
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and formula (62) follows. Regarding the coercivity of ~Ds, we have, for all n 2 RN ,

XN

i;j�1

~Ds
ijninj P

XK

a�1

XN

i;j�1

Z
Y

Dar yi

�
� h�i;a

�
r�yj � h�j;a�ninj dy

ÿ 1

2

XK

a;b�1

XN

i;j�1

Z
Y

~Qa;b h�i;a
�

ÿ h�i;b
�

h�j;a
�

ÿ h�j;b
�
ninj dy

P C
XK

a�1

Z
Y
r

XN

i�1

ni�yi

 ����� ÿ h�i;a�
!�����

2

dy

ÿ 1

2

XK

a;b�1

Z
Y

~Qa;b

XN

i�1

h�i;a
� 

ÿ h�i;b
�
ni

!2

dy;

where C > 0 is the coercivity constant of Da, for all a. Since ~Qa;b6 0 for all a 6� b, the second term is also
positive, which proves that ~Ds is positive de®nite. �

Proposition 5.7. The symmetrical part of ~D coincide with D, i.e.

~Ds
i;j � Di;j �

XK

a�1

Z
Y

Da�y�r yi� � hi;a�y�� � r yj

ÿ � hj;a�y�
�

dy

ÿ 1

2

XK

a;b�1

Z
Y

~Qa;b�y� hi;a�y�
ÿ ÿ hi;b�y�

� � hj;a�y�
ÿ ÿ hj;b�y�

�
dy: �63�

Proof. From Eq. (60) we get

~Di;j �
PK
a�1

R
Y Daryi � r hj;a � yj

ÿ �
dy �PK

a�1

R
Y Jaryj � h�i;a dy

�PK
a�1

R
Y Darh�i;a � r hj;a � yj

ÿ �
dy ÿPK

a�1

R
Y Dar h�i;a � yi

� �
� rhj;a dy:

The de®nitions (53) of h�j and (52) of hi gives that

XK

a�1

Z
Y

Darh�i;a � r hj;a

ÿ � yj

�
dy ÿ

XK

a�1

Z
Y

Dar h�i;a
�

� yi

�
� rhj;a dy

� ÿ
Z

Y
Q�hj � yj� � h�i dy �

Z
Y

Q��h�i � yi� � hj dy

� ÿ
XK

a�1

Z
Y

Ja � ryjh
�
i;a dy ÿ

XK

a�1

Z
Y

Ja � ryihj;a dy:

Thus, the homogenized matrix ~D is also given by

~Di;j �
XK

a�1

Z
Y

Daryi � r hj;a

ÿ � yj

�
dy ÿ

XK

a�1

Z
Y

hj;aJa � ryi dy: �64�

Now, formula (64) for ~D, expressed in terms of hi, can be compared with formula (60), and arguing as in
the proof of Proposition 5.6 leads to the desired formula (63). �

Remark 5.8. The functions �hi�16 i6N have been defined in two different ways. In Theorem 3.2 they are defined
as the solutions of system (22), whereas in Proposition 5.3 they are solutions of system (52). Our notations are
consistent in the sense that Eq. (52) is just Eq. (22), each line being multiplied by waw

�
a.
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Remark 5.9. As shown above, the homogenized diffusion matrix D can be defined, as in Eq. (21), in terms of
corrector functions �hi�16 i6N , or, as in Eq. (62), in terms of adjoint correctors �h�i �16 i6N . In fact, the intro-
duction of adjoint correctors is not compulsory for obtaining the homogenized limit: the proof of Proposition
3.10 can also be done with test functions defined through direct correctors hi;a, even though the limit formula
appears in a more complicated form.

The fact that we can characterize the homogenized matrix ~D with either direct or adjoint correctors en-
lightens the meaning of the symmetry condition (18) we have assumed. Indeed, had we addressed the adjoint
problem of Eq. (8), we would have obtained that, once factorized by the periodic eigenvector w�, it converged to
the very same eigenvalue problem. Therefore, the macroscopic behaviour of the direct and adjoint eigenvectors
of problem (8) are asymptotically equal. The symmetry condition (18) implies that �-scale oscillations capture
the non-adjointness of the problem.

6. A corrector result

In this section we show that, under the symmetry assumption (18), the so-called correctors u1�x; y� can
actually improve the convergence result. In other words this justi®es the � order terms of the asymptotic
expansion of u�. To obtain this result we follow the approach in [1].

Theorem 6.1. Let f � be a sequence which converges weakly in L2�X�K to f with components fa� �16 a6K . Let u�

be defined as the unique solution in H 1
0 �X�K of Eq. (40). Let u0�x� be the unique solution in H 0

1 �X� of Eq. (61)
and u1�x; y� be the unique solution in L2�X;H�Y �� of Eq. (47). Suppose that the symmetry condition (18) is
observed, and u0 2 H 2

0 �X�. Then

u� ÿ u0�x�1ÿ �u1 x;
x
�

� �
! 0 strongly in H 1

0 �X�:

Remark 6.2. This corrector result can be applied to the original eigenvalue problem (8). Indeed, Theorem 3.2
insures the convergence of �ÿ2�l� ÿ l1� in R, and of u� in L2�X� strong. Thus the right hand side of Eq. (27)
satisfies the same hypothesis as f � does. In that particular case, u0 is smooth, as a solution of a constant
coefficient elliptic eigenvalue problem.

Proof. Let us ®rst remark that ru1
a�x; �x=��� belongs to L2�X�N for all 16 a6K, because of the regularity of

u0. It is su�cient to prove that

lim
�!0

XK

a�1

Z
X

Da
x
�

� �
rf�a � rf�a dx � 0

with f�a � u�a ÿ u0�x� ÿ �u1
a x; �x=��� �. Multiplying Eq. (40) by u�, integrating by parts and using identity (38)

yieldsXK

a�1

Z
X

Da
x
�

� �
ru�a � ru�a dxÿ 1

2�2

XK

a;b�1

Z
X

~Qa;b

x
�

� �
u�a
�
ÿ u�b

�2

dx �
XK

a�1

Z
X

f �a � u�a dx:

Using the above identity in the expansion of D�x=��rf� � rf� we obtainXK

a�1

Z
X

Da
x
�

� �
rf�a � rf�a dx

� 1

2�2

XK

a;b�1

Z
X

~Qa;b

x
�

� �
u�a
�
ÿ u�b

�2

dx�
XK

a�1

Z
X

Da
x
�

� �
r u0�x�
�

� �u1
a x;

x
�

� ��
� r u0�x�
�

� �u1
a x;

x
�

� ��
dx

ÿ 2
XK

a�1

Z
X

Da
x
�

� �
ru�a � r u0�x�

�
� �u1

a x;
x
�

� ��
dx�

XK

a�1

Z
X

f �a � u�a dx: �65�
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The last three terms of the right hand side converges as � goes to zero to their two-scale limits. The only
di�culty lies in the ®rst term of the right hand side, which is a product of two-scale weakly converging terms.
We know from Proposition 1.6 of [1], that if v0�x; y� is the two scale limit of a sequence v� in L2�X� we have

lim
�!0
kv�kL2�X�P kv0kL2�X�Y �:

In Proposition 4.6 we established that the two-scale limit of �1=�� u� ÿ 1 u�� �� � was u1�x; y� ÿ 1 u1� �. It
implies that ~Qa;b�y��u1

a�x; y� ÿ u1
b�x; y�� is the two scale limit of 1

�
~Qa;b

x
�

ÿ ��u�a ÿ u�b�, for all 16 a; b6K.
Keeping in mind that ~Qa;b6 0 if a 6� b, the above inequality implies that

lim
�!0

1

�2

Z
X

~Qa;b

x
�

� �
u�a
�
ÿ u�b

�2

dx6
Z

X

Z
Y

~Qa;b�y� u1
a�x; y�

�
ÿ u1

b�x; y�
�2

dy dx:

Thus, taking the limit of all quantities in Eq. (65) as � goes to zero,

lim
�!0

XK

a�1

Z
X

Da
x
�

� �
rf�a � rf�a dx

6 1

2

XK

a;b�1

Z
Y

~Qa;b�y� u1
a�x; y�

�
ÿ u1

b�x; y�
�2

dxdy

ÿ
XK

a�1

Z
X

Z
Y

Da�y� ru0�x�ÿ ÿryu1
a x; y� �� � ru0�x�ÿ ÿryu1

a x; y� ��dxdy �
XK

a�1

Z
X

fa�x�u0�x�dx

We now replace u1
a�x; y� by its value

PN
i�1 hi;a�y��ou0=oxi��x� and obtain that the right hand side of this

inequality is equal to

ÿ
Z

X
Dru0�x� � ru0�x� �

XK

a�1

Z
X

fa�x�u0�x�dx;

which is clearly zero because of the variational formulation of Eq. (61). �

7. Numerical results

In this section we shall present some numerical results describing the asymptotical behaviour of the two-
energy-group model (4) (K � 2). The goal is to test the accuracy of the homogenization procedure com-
pared to a direct (expensive) approach. We have performed a simple one-dimensional simulation of an
idealized reactor of length l, composed of n identical cells. The periodicity cell, has a structure as sketched
in Fig. 1. In a nuclear context, material A would correspond to water, surrounding fuel rods B (typically,
uranium). However such a choice of materials would not create large �-scale oscillations, and the graphical
output would simply display its smooth macroscopical trend (in real nuclear reactors large small-scale
¯uctuations are observed but with a more complicated pattern than that of Fig. 1; for example with mixed
uranium oxides assemblies). Therefore, we chose to present a numerical simulation with fancy materials
such that the two regions A and B correspond to high contrast materials. The numerical values of the
di�erent coe�cients are presented in Table 1.

In the two-energy-group model (4) three quantities are of interest. The ®rst eigenvalue l�, and its cor-
responding normalized eigenvector �/�

1;/
�
2�, where /�

1 is the fast neutrons ¯ux and /�
2 is the slow (or

thermal) neutrons ¯ux. We ®rst computed directly these solutions (which, for small �, is an expensive task),
and then compared them with the reconstructed homogenized solutions.

Fig. 1. Periodicity cell structure.
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All computations are done with piecewise linear ®nite elements. In practice, we discretize the coe�cients
on a cell with ncell � 50 degrees of freedom, and then construct the domain as a juxtaposition of N dis-
cretized cells. Using a power method, we compute the ®rst eigenvalue and eigenvector of the direct problem
with Dirichlet boundary conditions for � � Nÿ1 (corresponding to N � ncell ÿ 1 degrees of freedom). Al-
ternatively, we compute the ®rst eigenvalue l1 and eigenvector �w1;w2� on the discretized cell with periodic
boundary conditions (the so-called in®nite medium problem), and also the adjoint ®rst eigenvector �w�1;w�2�
and the correctors �f1; f2� that allow to compute the homogenized coe�cients. Since the homogenized
problem has constant coe�cients, we know its exact ®rst eigenvalue and eigenvector (a sine function). Then
we re-construct the ¯uxes by the following homogenized approximation

/H ;�
1 � sin�x�w1

x
�

� �
� � cos�x�f1

x
�

� �
;

/H ;�
2 � sin�x�w2

x
�

� �
� � cos�x�f2

x
�

� �
;

lH ;� � l1 � �2 p2D
r
:

The constants D and r are given by formulas (21) and (22), whereas corrector f is given by Eq. (22).
In Table 2 the reference eigenvalue l� and its reconstructed counterpart lH ;� for various number of cells

are displayed. The last column shows the absolute error between the two, in p.c.m. unit (one p.c.m. is 10ÿ5).
The numerical estimate of the rate of convergence is

v �
ln e30

e10

� �
ln 10

30

ÿ � ' 3:20

as expected from Theorem 3.2. This numerical estimate l� ÿ lH ;� � O��3� is of course much better than the
convergence rate of l� to its limit l1. In the one-energy group case, Malige [23] (building upon results in
[29]) proved that the third-order term of the asymptotic expansion of l� is indeed zero if the periodicity cell
is symmetric. We do not know if such a result would hold in the two-energy-group case. Our numerical
results suggest at least that, if it were the case, the next non-zero term in the asymptotic expansion is larger
than �4.

In Fig. 2 the exact fast neutron ¯ux /�
1 and the reconstructed ¯ux /H ;�

1 with the same normalization are
plotted. In Fig. 3 the corresponding thermal ¯uxes /�

2 and /H ;�
2 are plotted. In our example, the addition of

correctors � cos�x�fa
x
�

ÿ �
does not improve signi®cantly the reconstructed ¯ux. However, the correctors

ha � fa=wa play a fundamental role in the computation of the homogenized di�usion coe�cient. Indirectly,

Table 1

Numerical values used for the simulation

Medium A1 A2 R11 R22 R21 r11 r12

A 1.200 0.100 2.500 1.500 0.001 0.000 0.001

B 1.370 0.400 0.100 0.070 1.060 2.070 0.160

Table 2

Reference and reconstructed ®rst eigenvalue for a high contrast cell

Number of cells Reference l� Reconstructed lH ;� Error (�10ÿ5)

5 2.29630 2.24501 5129

10 1.75285 1.74068 1217

15 1.65208 1.64729 479

20 1.61681 1.61460 221

25 1.60048 1.59947 101

30 1.59161 1.59125 36

1 1.57257
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their in¯uence on the homogenized eigenvalue is, here, about 1%, and grows rapidly if the contrast between
the two media is increased.
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