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1 Introdution

The homogenization method for topology optimization in strutural design is

by now well established (see [2℄, [3℄, [7℄, [8℄, [15℄, [16℄, [17℄, [18℄ and referenes

therein). However, the theory is restrited to ompliane or eigenfrequeny

optimization (in the single or multiple loadings ase). The problem is that

optimal mirostrutures are unknown for general objetive funtions. Of ourse,

in numerial pratie, many generalizations have appeared: they often rely on

the use of �titious materials (so-alled power-law materials, see e.g. [18℄) or of

sub-optimal materials (for example, obtained by homogenization of a perforated

periodi ell). Working with a sublass of mirostrutures is alled a partial

relaxation of the problem. This sublass needs to be rih enough in order to

approximate as muh as possible the true optimal mirostrutures, whih yields

good numerial properties (fast onvergene, global minima). On the other

hand it must be as expliit as possible for a good eÆieny. The idea of partial

relaxation is not new but somehow has never been explored systematially. The

purpose of this work is to desribe suh a proedure for the lass of so-alled

sequential laminates (of any order) whih are delivered by an expliit formula

and are optimal in a number of important ases. We desribe the numerial

implementation of this method of partial relaxation and disuss its appliation

on several examples. Part of this work was written up in Aubry's thesis [5℄.

2 Setting of the problem

We onsider a bounded domain 
 2 IR

N

, with N = 2 or 3, oupied by two

linearly elasti isotropi phases A and B. Their Hooke's laws are also denoted
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by A and B and satisfy for any symmetri matrix �

A� = 2�

A

� +

�

�

A

�

2�

A

N

�

(tr�) I

2

; B� = 2�

B

� +

�

�

B

�

2�

B

N

�

(tr�) I

2

;

where 0 < �

A

< �

B

are the shear moduli and 0 < �

A

< �

B

are the bulk moduli.

It is onvenient to introdue a Lam�e oeÆient, proportional to the Poisson's

ratio, de�ned by

�

A

= �

A

�

2�

A

N

; �

B

= �

B

�

2�

B

N

:

Let � 2 L

1

(
; f0; 1g) be the harateristi funtion of phase A. We de�ne an

overall Hooke's law in 
 by

A

�

= �A+ (1� �)B:

The orresponding displaement u

�

of this struture is omputed as the unique

solution in H

1

0

(
)

N

of

�

� div (A

�

e(u

�

)) = f in 


u

�

= 0 on �
;

where e(u

�

) = (ru +r

t

u)=2 is the strain tensor, and f is a given body fore

in L

2

(
)

N

(for simpliity, we have hosen to work with a model problem with

Dirihlet boundary onditions, but more general surfae loadings or boundary

onditions are possible). We address the following two-phase optimal design

problem (shape optimization orresponds to the degenerate limit A! 0)

inf

�2L

1

(
;f0;1g)

J(�); (1)

with an objetive funtion J de�ned by

J(�) =

Z




[�(x)g

A

(x; u

�

(x)) + (1� �(x))g

B

(x; u

�

(x))℄ dx + `

Z




�(x)dx;

where ` is a Lagrange multiplier for a volume onstraint on phase A, and g

A

; g

B

are smooth funtions with suitable growth.

It is a lassial matter to show that (1) is an ill-posed problem whih requires

relaxation, i.e. for whih there exist only generalized optimal solutions (see e.g.

[15℄, [17℄). These generalized designs are de�ned as omposite materials obtained

by mixing on a mirosopi sale the two phases A and B. The omposite

materials are parametrized by two funtions: the density �(x) 2 [0; 1℄ of phase

A and the mirostruture or geometri arrangement of the two phases (yielding

di�erent e�etive Hooke's laws A

�

(x)) at eah point x 2 
. By homogenization

theory, the relaxed formulation of (1) turns out to be

min

(�;A

�

)2CD

J

�

(�; A

�

); (2)
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with an extended objetive funtion

J

�

(�; A

�

) =

Z




(�g

A

(x; u) + (1� �)g

B

(x; u) + `�) dx; (3)

where u(x) is the unique solution in H

1

0

(
)

N

of the homogenized problem

�

� div (A

�

e(u)) = f in 
;

u = 0 on �
;

(4)

and CD is the spae of generalized or omposite designs

CD =

�

� 2 L

1

(
; [0; 1℄) ; A

�

(x) 2 G

�(x)

8x 2 


	

; (5)

where, for eah onstant value 0 � � � 1, G

�

is the set of all homogenized

Hooke's law obtained by mixing the phases A and B in proportions �; 1� �.

The advantages of the relaxed formulation (2) are numerous and well de-

sribed in e.g. [3℄, [15℄, [16℄, [17℄. In partiular, it always admits an optimal

solution while any omposite design is attained as the limit of a sequene of

lassial designs. This implies that relaxation does not hange the problem but

makes it well-posed, and that a nearly optimal lassial design an easily be

reovered from an optimal omposite design by a suitable penalization proess.

There are also many numerial algorithms based on this approah that an be

viewed as topology optimization methods (see e.g. [2℄, [3℄, [7℄, [8℄, [11℄, [12℄).

There is however one serious disadvantage with the relaxed formulation (2)

sine the set G

�

of all omposite materials is unknown. In a few speial ases

(of great pratial importane), the optimality onditions allows to replae G

�

by its expliit subset of so-alled sequential laminates. This is possible if the

objetive funtion J and J

�

is the ompliane or the �rst eigenfrequeny (or

even a sum of several of them, see e.g. [1℄, [4℄). In suh a ase, (2) is truly useful

and fully expliit. Unfortunately, in all other ases (whih are the vast majority

of hoies of the funtions g

A

; g

B

), this relaxed formulation is useless sine we

have no knowledge of this set G

�

of omposite materials. By opposition to what

follows, we shall all (2) a fully relaxed formulation.

3 Partial relaxation

To obtain a tratable formulation, we restrit G

�

to its expliit subset L

+

�

of

all sequential laminates A

�

, with ore A and matrix B, in proportions � and

(1� �) respetively, de�ned by formula (6). For a number q of laminations and

unit lamination diretions (e

i

)

1�i�q

, as well as lamination parameters (m

i

)

1�i�q

satisfying m

i

� 0 and

P

q

i=1

m

i

= 1, a sequential laminate A

�

is de�ned by

� (A

�

�B)

�1

= (A�B)

�1

+ (1� �)

q

X

i=1

m

i

f

B

(e

i

); (6)
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where f

B

(e

i

) is given by

f

B

(e)� : � =

1

�

B

�

j�ej

2

� (�e � e)

2

�

+

1

2�

B

+ �

B

(�e � e)

2

: (7)

We introdue a set LD

+

of sequentially laminated designs, de�ned by

LD

+

=

n

� 2 L

1

(
; [0; 1℄) ; A

�

(x) 2 L

+

�(x)

8x 2 


o

: (8)

The proposed partial relaxation is

inf

(�;A

�

)2LD

+

J

�

(�; A

�

); (9)

with the same objetive funtion J

�

de�ned by (3). A priori, the existene of

a minimizer of the partial relaxation (9) is not guaranteed, whih is the main

di�erene with the full relaxation (2). It seems that we have gain very little

in replaing the ill-posed problem (1) by another ill-posed problem (9). Nev-

ertheless, loosely speaking the latter is less ill-posed than the former sine its

integrand has been smoothed or averaged, at least partially, leading to better

onvexity properties. The question of how muh qualitatively the partial re-

laxation improves on the original formulation is linked to the question of how

far from optimal are the mirostrutures in L

+

�

. As a possible justi�ation of

this partial relaxation (9), let us simply reall that in the ases of ompliane

or eigenfrequeny optimization it oinides with the full relaxation.

The advantage of dealing with generalized designs in LD

+

, instead of CD, is

that we an �nd optimality onditions whih amounts to ompute the derivative

of the objetive funtion and builds numerial gradient algorithms. We �rst

ompute the derivatives of J

�

in the ontinuous ase. For this purpose we

�rst need to obtain a onvenient ontinuous parameterization of the set L

+

�

of

sequential laminates. Introduing a probability measure � de�ned by

�(e) =

q

X

i=1

m

i

Æ(e� e

i

)

where Æ is the Dira mass at the origin, any sequential laminate A

�

in L

+

�

is

parametrized by the proportion � of phase A and by this probability measure

� (positive with unit mass). More preisely, following [6℄, one an show that

L

+

�

is the set of all symmetri fourth-order tensors A

�

suh that there exists a

probability measure � on the unit sphere S

N�1

= fe 2 IR

N

; jej = 1g satisfying

� (A

�

�B)

�1

= (A�B)

�1

+ (1� �)

Z

S

N�1

f

B

(e) d�(e); (10)

with f

B

(e) de�ned by (7). Reall that a probability measure � on S

N�1

must be

non-negative, �(e) � 0, and of unit mass,

R

S

N�1

d�(e) = 1. We therefore view �
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and � as the true independent design parameters in LD

+

. In other words, the

partial relaxation (9) is equivalent to

inf

(�;�)

fJ

�

(�; �) = J

�

(�; A

�

(�; �))g :

One an ompute the partial derivatives of J

�

by introduing an adjoint state

p whih is the solution of

�

� div (A

�

e(p)) = �

�g

A

�u

(x; u) + (1� �)

�g

B

�u

(x; u) in 


p = 0 on �
:

(11)

The objetive funtion J

�

(�; �) is di�erentiable, and denoting by Æ� and Æ�

admissible inrements, its diretional derivative is

ÆJ

�

(�; �) =

Z




r

�

J

�

Æ� dx+

Z




Z

S

N�1

r

�

J

�

d(Æ�) dx; (12)

with the partial derivatives

r

�

J

�

(x) = g

A

(x; u(x)) � g

B

(x; u(x)) + `+

�A

�

��

e(u) : e(p);

r

�

J

�

(x; e) =

�A

�

��

(x; e)e(u) : e(p);

and

�A

�

��

(x) = T

�1

�

(A�B)

�1

+

R

S

N�1

f

B

(e) d�(e)

�

T

�1

;

�A

�

��

(x; e) = ��(1� �)T

�1

f

B

(e)T

�1

;

T = (A�B)

�1

+ (1� �)

R

S

N�1

f

B

(e) d�(e) :

This gives the basis for a numerial gradient method whih is desribed in the

next setion. Of ourse, sine �; � are onstrained loally at eah point x (� must

stay in the range [0; 1℄, and � is a probability measure) the gradient method must

be ombined with a projetion step to satisfy these onstraints.

For simpliity we foused on the ase of a single load optimization problem.

There is obviously no diÆulty in extending the previous analysis to multiple

load problems. This approah an also be extended to problems where the

objetive funtion involves strain or stress tensors. This auses additional dif-

�ulties sine one need so-alled orretor results to de�ne the generalized or

relaxed objetive funtions. However, these orretors are expliitly known for

laminates (see [9℄). We will report on this topi in a future work.
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4 Numerial algorithm

To obtain a numerial method we must, as usual, disretize in spae the design

variables � and �, but the measure � must also be disretized with respet

to its seond argument, the unit vetor e. Therefore, we disretize the unit

sphere S

N�1

by a number q of �xed diretions (e

j

)

1�j�q

, and we replae the

"ontinuous" measure � by a "disrete" measure whih is a sum of Dira masses

�

disrete

(e) =

q

X

i=1

m

i

Æ(e� e

i

) (13)

where (m

i

)

1�i�q

is a olletion of parameters satisfying m

i

� 0 and

P

q

i=1

m

i

=

1. Of ourse, this amounts to replae the "ontinuous" lamination formula (10)

by its "disrete" analogue (6). In order to keep a small number of diretions q

(of the order of 4 in pratie) and yet have good results, we an also introdue a

global rotation of the mirostruture, namely use the following rotated version

of (6)

� (A

�

�B)

�1

= (A�B)

�1

+ (1� �)

q

X

j=1

m

j

R

t

f

B

(e

j

)R : (14)

where R is the fourth order tensor orresponding to a rotation matrix Q in the

physial spae (with Q

�1

= Q

t

), i.e. R� = Q

�1

�Q for any symmetri matrix

�. This introdues another design parameter, denoted by �, whih orresponds

to one angle in 2-D or two angles in 3-D neessary to parameterize a rotation

Q(�) in the physial spae. Adding this rotation parameter � requires the

omputation of another partial derivative of J

�

whih is easily seen to be

r

�

J

�

(x) =

�A

�

��

(x)e(u) : e(p);

with

�A

�

��

= ��(1� �)T

�1

�M

��

T

�1

;

T (�) = (A�B)

�1

+ (1� �)

P

q

j=1

m

j

R

t

(�)f

B

(e

j

)R(�);

M(�) = R

t

(�)

�

P

q

j=1

m

j

f

B

(e

j

)

�

R(�):

Upon disretization of the unit sphere S

N�1

, a measure � is now ompletely

determined by the vetor m = (m

i

)

1�i�q

whih appears in (13). Therefore, the

partial derivative r

�

J

�

is replaed by

r

m

J

�

(x) =

�A

�

�m

(x)e(u) : e(p); (15)
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with

�A

�

�m

=

�

�A

�

�m

i

�

1�i�q

=

�

��(1� �)T

�1

R

t

f

B

(e

i

)RT

�1

�

1�i�q

:

Reall that (13) is a probability measure if the vetor m satis�es m

i

� 0 and

P

q

i=1

m

i

= 1. This gives the required projetion for the gradient algorithm. We

now have all the ingredients to de�ne the proposed numerial algorithm.

1. Initialization of the design parameters �

0

; �

0

;m

0

(for example, we take

them onstant satisfying the onstraints).

2. Iteration until onvergene, for k � 0:

(a) Computation of the state u

k

and the adjoint state p

k

, solutions of (4)

and (11) respetively, with the previous design parameters �

k

; �

k

;m

k

.

(b) Updating of these parameters by

�

k+1

= max (0;min (1; �

k

� t

k

r

�

J

�

k

)) ;

�

k+1

= �

k

� t

k

r

�

J

�

k

;

m

i;k+1

= max (0;m

i;k

� t

k

r

m

i

J

�

k

+ `

k

) :

where `

k

is a Lagrange multiplier (iteratively adjusted) for the on-

straint

P

q

i=1

m

i;k

= 1, and t

k

> 0 is a small step suh that

J

�

(�

k+1

; �

k+1

;m

k+1

) < J

�

(�

k

; �

k

;m

k

):

A good desent step t

k

is omputed through a line searh that may be

expensive sine eah evaluation of the objetive funtion requires the solution of

the diret and adjoint equation. In pratie, we stop as soon as J

�

k+1

� J

�

k

and

we divide the step by two if not. Of ourse, more lever optimization shemes

ould be used (see e.g. [20℄).

Figure 1: Boundary onditions for the antilever problem.

We have tested this numerial method on various 2-D problems (3-D would

work as well). Several objetive funtions are available (see e.g. the design of
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ompliant mehanisms in [19℄). Here we restrit ourselves to the minimization of

the displaement �eld. The Young modulus of material B is normalized to 1 and

its Poisson ratio is �xed to 0:3. Material A is assumed to be void, and to avoid

degeneray the lowest admissible value of the material density (1��) is 10

�3

.The

algorithm is initialized with a working domain full of material (�

0

= 0). We

study a medium antilever problem (see the boundary onditions on Figure 1):

the domain size is 20�10 disretized with a retangular 120�60 mesh, and the

Lagrange multiplier ` is iteratively adjusted so that the weight of the struture

is onstrained to be 40% of that of the full working domain. We minimize the

L

m

(
)-norm of the displaement, whih orresponds to the following hoie:

g

A

(x; u) = 0 and g

B

(x; u) = juj

m

. In truth, the objetive funtion is resaled

in order to avoid the e�ets of rounding errors for large values of m, i.e. we

minimize

J

�

(�; A

�

) =

�

Z




(1� �)juj

m

dx

�

1=m

;

with a volume onstraint. As expeted, the "omposite" solutions (i.e. the

numerial output of the partial relaxation) exhibit large areas of intermediate

densities (whih indiates that in pratie the laminated omposites are often

optimal for this problem). To reover lassial designs (i.e. with pure material

and void) we apply a penalization proedure as in e.g. [2℄, [21℄ whih fores the

density � to take only the values 0 or 1. We tried two di�erent penalization

proedures. The �rst one amounts to add a penalizing term to the standard

objetive funtion J

�

(�; A

�

) of the type



pen

Z




(1� �)

q

�

q

dx

where 

pen

is a positive onstant and q is an exponent larger or equal to 1. We

prefer a seond more eÆient proedure whih hanges the lamination formula

giving the value of the homogenized tensor A

�

. Instead of (6) (or its rotated

version (14)) we use

�

q

(A

�

�B)

�1

= (A�B)

�1

+ (1� �

q

)

q

X

i=1

m

i

f

B

(e

i

); (16)

where q > 1 is typially 3 or 5. The e�et of (16) is that the resulting "�titious"

omposite A

�

is muh weaker than the usual laminate. Therefore, it is not

advantageous to use any suh omposite of intermediate density. Using the

modi�ed formula (16) results in a very e�etive penalization sheme: almost

all grey areas in the homogenized design disappear to yield a blak and white

"penalized" design as an be seen in the following pitures.

In all omputations we �x the number of lamination diretions to 4. Figure 2

displays the results for m = 2, Figure 3 for m = 10, and Figure 4 for m =

100. Remark that the optimal designs for m = 100 are very lose to those of

8



ompliane optimization (Figure 5) as it should be sine for suh a point load

minimizing the ompliane of the maximal displaement is the same.

Figure 2: Optimal shape of the antilever for m = 2: omposite (left) and

penalized (right).

Figure 3: Optimal shape of the antilever for m = 10: omposite (left) and

penalized (right).

Figure 4: Optimal shape of the antilever for m = 100: omposite (left) and

penalized (right).

Referenes

[1℄ Allaire, G., Belhahmi, Z., Jouve F. (1996) The homogenization method

for topology and shape optimization. Single and multiple loads ase, Revue

Europ�eenne des El�ements Finis 5, 649-672.

9



Figure 5: Optimal shape of the antilever for the ompliane: omposite (left)

and penalized (right).

[2℄ Allaire, G., Bonnetier, E., Franfort, G., Jouve, F. (1997) Shape optimiza-

tion by the homogenization method, N�umerishe Mathematik 76, 27-68.

[3℄ Allaire, G., Kohn, R.V. (1993) Optimal design for minimum weight and

ompliane in plane stress using extremal mirostrutures, Europ. J. Meh.

A/Solids 12, 6, 839-878.

[4℄ Allaire, G., Aubry, S., Jouve, F. (2000) Eigenfrequeny optimization in

optimal design, to appear in Comp. Meth. App. Meh. Engrg.

[5℄ Aubry, S. (1999) Etude th�eorique et num�erique de quelques probl�emes

d'optimisation de formes �a l'aide de m�ethodes d'homog�en�eisation, PhD

Thesis, Universit�e Paris 6.

[6℄ Avellaneda, M. (1987) Optimal bounds and mirogeometries for elasti

two-phase omposites, SIAM J. Appl. Math. 47, 6, 1216-1228.

[7℄ Bendsoe, M. (1995) Methods for optimization of strutural topology, shape

and material, Springer Verlag, New York.

[8℄ Bendsoe, M., Kikuhi, N. (1988) Generating Optimal Topologies in Stru-

tural Design Using a Homogenization Method, Comp. Meth. Appl. Meh.

Eng. 71, 197-224.

[9℄ Briane, M. (1994) Corretors for the homogenization of a laminate, Ad-

vanes in Mathematial Sienes and Appliations, Gakkotosho, Tokyo, 4,

357-379.

[10℄ Cherkaev A., Kohn R.V., Editors, Topis in the mathematial modeling of

omposite materials, Progress in Nonlinear Di�erential Equations and their

Appliations, 31, Birkha�user, Boston (1997).

[11℄ Diaz, A., Bendsoe, M. (1992) Shape optimization of strutures for multiple

loading onditions using a homogenization method, Strut. Optim. 4, 17-22.

10



[12℄ Diaz A., Kikuhi N. (1992) Solutions to shape and topology eigenvalue

optimization problems using a homogenization method, Int. J. Num. Meth.

Engng. 35, 1487-1502.

[13℄ Gibiansky, L., Cherkaev, A. (1984) Design of omposite plates of extremal

rigidity, Io�e Physiotehnial Institute preprint, in russian. English trans-

lation in [10℄.

[14℄ Gibiansky, L., Cherkaev, A. (1987) Mirostrutures of omposites of ex-

tremal rigidity and exat bounds of the assoiated energy density, Io�e

Physiotehnial Institute preprint, in russian. English translation in [10℄.

[15℄ Kohn, R.V., Strang, G. (1986) Optimal Design and Relaxation of Varia-

tional Problems I-II-III, Comm. Pure Appl. Math. 39, 113-137, 139-182,

353-377.

[16℄ Lurie, K., Cherkaev, A. (1986) E�etive harateristis of omposite mate-

rials and the optimal design of strutural elements, Uspekhi Mekhaniki 9,

3-81. English translation in [10℄.

[17℄ Murat, F., Tartar, L. (1985) Calul des Variations et Homog�en�eisation,

in D. Bergman et. al. (eds.), Les M�ethodes de l'Homog�en�eisation Th�eorie

et Appliations en Physique, Coll. Dir. Etudes et Reherhes EDF, 57,

Eyrolles, Paris, pp.319-369. English translation in [10℄.

[18℄ Rozvany, G., Bendsoe, M., Kirsh, U. (1995) Layout optimization of stru-

tures, Appl. Meh. Reviews 48, 41-118.

[19℄ Sigmund, O. (1997) On the design of ompliant mehanisms using topology

optimization, Meh. Strut. Mah. 25, 493-524.

[20℄ Svanberg, K. (1987) The method of moving asymptotes, a new method for

strutural optimization, Int. J. Num. Meth. Engrg. 24, 359-373.

[21℄ Zhou, M., Rozvany G. (1991) The COC algorithm, Part II: Topologial,

geometrial and generalized shape optimization, Comp. Meth. App. Meh.

Engrg. 89, 309-336.

11


