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Abstract. In one space dimension we address the homogenization of the spectral problem
for a singularly perturbed diffusion equation in a periodic medium. Denoting by ε the
period, the diffusion coefficient is scaled as ε2. The domain is made of two purely periodic
media separated by an interface. Depending on the connection between the two cell spectral
equations, three different situations arise when ε goes to zero. First, there is a global
homogenized problem as in the case without an interface. Second, the limit is made of two
homogenized problems with a Dirichlet boundary condition on the interface. Third, there is
an exponential localization near the interface of the first eigenfunction.

Mathematics Subject Classification (2000). 35B27, 74Q15

1. Introduction

This paper is devoted to the homogenization of the eigenvalue problem for a singu-
larly perturbed diffusion equation in a periodic medium. Although this problem is
of interest in higher-space dimensions, we restrict ourselves to the one-dimensional
case because of the difficulty of the analysis. In particular, one of our key tools
is the theory of Hill’s ordinary differential equation [14] for which there is no
equivalent in higher dimensions. Denoting the period by ε, the diffusion coefficient
is assumed to be of the order of ε2. Thus, we consider the following model:
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φε = λεσ
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x
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)
φε in Ω,

φε = 0 on ∂Ω,
(1.1)

where λε, φε is an eigenvalue and eigenfunction (throughout this paper, the eigen-
functions are normalized by ‖φε‖L2(Ω) = 1). In (1.1) the coefficients are periodic
of period 1 with respect to the fast variable x/ε. The general study of the homoge-
nization of (1.1) is far from being complete. When the coefficients are not rapidly
oscillating (i.e., they depend on the slow variable x but not on x/ε), it is a problem
of singular perturbation (without homogenization) which is quite well understood

G. Allaire: Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau,
France, e-mail: allaire@cmapx.polytechnique.fr

Y. Capdeboscq: Department of Mathematics, Rutgers University, Piscataway, NJ 08854,
USA, e-mail: ycrc@math.rutgers.edu



248 G. Allaire, Y. Capdeboscq

now in any space dimension (see, e.g., [23]). When the coefficients are purely
periodic functions (i.e., they depend solely on x/ε), the homogenization of (1.1)
(and similar models in higher dimension) has been achieved in [2], [3], [5]. In the
case of smooth coefficients with a concentration hypothesis, partial results have
recently been obtained in [6] (again in any space dimension). Here we focus on the
different case (of practical as well as theoretical importance) where the coefficients
are discontinuous. More precisely, we focus on the simplest possible model in this
context, assuming that the domain is composed of two periodical media separated
by an interface.

The domain Ω is of the form (−l, L), where l and L are strictly positive
constants, and we introduce the two sub-domains Ω1 = (−l, 0) and Ω2 = (0, L)
separated by an interface located at the point 0. Denoting by χi(x) the characteristic
function of Ωi (satisfying χ1 + χ2 = 1 and χ1χ2 = 0 in Ω), the coefficients are
assumed to be given as:


a(x, y) = χ1(x)a1(y)+ χ2(x)a2(y),

Σ(x, y) = χ1(x)Σ1(y)+ χ2(x)Σ2(y),

σ(x, y) = χ1(x)σ1(y)+ χ2(x)σ2(y).

(1.2)

All functions a1, a2,Σ1,Σ2, σ1 and σ2 are assumed to be measurable, 1-periodic,
bounded from above and below by positive constants. Under these assumptions,
it is well known that Equation (1.1) admits a countable infinite number of non-
trivial solutions (λεm, φ

ε
m)m≥1. By standard regularity results, each eigenfunctionφεm

belongs to H1
0 (Ω)∩C0,s(Ω), with s > 0, and by the Krein–Rutman theorem the first

eigenvalue is simple and the corresponding eigenfunction can be chosen positive.
Because of this property, the first eigenpair has a special physical signification, and
we are mostly interested in its behavior, although the case of higher-level eigenpairs
is also treated in some occasions.

The motivation for studying this model comes from several applications. First,
it can be seen as a semi-classical limit problem for a Schrödinger-type equation
with periodic potential, as well as a periodic metric (this is the so-called ground-
state asymptotic problem, see, e.g., [17], [23]). Second, it plays an important role
in the uniform controllability of the wave equation (see, e.g., [11]). Third, and this
is our main motivation, it is a simple model for computing the power distribution
in a nuclear reactor core. This is the so-called criticality problem for the one-group
neutron diffusion equation (for more details, we refer to [3], [9] and references
therein). In all these applications, the assumption of a purely periodic medium (i.e.,
no dependence on x of the coefficients) is much too strong. On the other hand the
coefficients are not smoothly varying but exhibit jumps at material interfaces. This
makes Model (1.1) with Assumptions (1.2) physically relevant.

The limit behavior of (1.1) is mainly governed by the first eigenpair (ψi , µi) in
the unit cell of Ωi , i = 1, 2, solution of


− d

dy

(
ai(y)

d

dy
ψi

)
+ Σi(y)ψi = µiσi(y)ψi in [0, 1],

y → ψi(y) 1-periodic and positive.

(1.3)
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Before we explain our main results, let us recall what was already proved in
[5] in the purely periodic case, namely when a1 = a2, Σ1 = Σ2, and σ1 = σ2.
Asymptotically, the macroscopic trend of φε is given by an homogeneous eigen-
value problem, whereas its oscillatory behavior is governed by ψ1(

x
ε
) (we call this

a factorization principle). More precisely, the result of [5] is:

Theorem 1.1. Assuming that a2 = a1, Σ2 = Σ1, and σ2 = σ1, the mth eigenpair
λεm , φ

ε
m of (1.1) satisfies

φεm(x) = uεm(x)ψ1

( x

ε

)
and λεm = µ1 + ε2νm + o(ε2),

where, up to a sub-sequence, the sequence uεm converges weakly in H1
0 (Ω) to um,

and (νm , um) is the mth eigenvalue and eigenvector for the homogenized problem


−D
d2

dx2
um = νm σum in Ω,

um = 0 on ∂Ω.

(1.4)

The homogenized coefficients are given by

D =
∫ 1

0
a1(y)ψ

2
1 (y)

(
1 + dξ

dy
(y)

)
dy and σ =

∫ 1

0
σ1(y)ψ

2
1 (y)dy, (1.5)

where the function ξ is the solution of


− d

dy

(
a1(y)ψ2

1 (y)

(
dξ

dy
+ 1

))
= 0 in [0, 1],

pny → ξ(y) 1-periodic.

(1.6)

Let us summarize our results in the case of equal first eigenvalue in the cells,
µ1 = µ2. In the following we choose to normalize the first periodic eigenfunctions
as follows:

ψ1(0) = ψ2(0) = 1. (1.7)

We introduce a so-called discontinuity constant, α, defined by

α = a1(0)
dψ1

dy
(0)− a2(0)

dψ2

dy
(0). (1.8)

Note that ai
dψi
dy belongs to H1(Ωi) which is embedded in C(Ωi) (in 1-D) and

therefore α is well defined as the trace of a continuous function at the origin. Three
different situations are possible according to the sign of α.

Ifα = 0, then the two periodic media are said to be well connected. In particular,
the function equal to ai(dψi)/(dx) in Ωi is continuous through the interface (as
well as ψi because of the normalization Condition (1.7)). Therefore, Theorem 1.1
extends easily to this case, and the discontinuity at the interface is not seen in
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the limit. Introducing a function ψ(x/ε) = χ1(x)ψ1(x/ε) + χ2(x)ψ2(x/ε), the
eigenpairs (λεm , φ

ε
m)m≥1 satisfy

λεm = µ1 + ε2νm + o(ε2) and φεm(x) = uεm(x)ψ
( x

ε

)
, (1.9)

where uεm converges weakly to um , and (λm , um)m≥1 are the eigenpairs of the
homogenized problem (see Theorem 3.1 and Figure 3.1)
− d

dx

((
χ1(x)D1 + χ2(x)D2

) du

dx

)
= ν (χ1(x)σ1 + χ2(x)σ2) u in Ω,

u = 0 on ∂Ω.

If α > 0, the interface has a repelling effect, and each eigenfunction goes to 0
at the interface. The convergence result (1.9) still holds true, but the homogenized
problem has an additional Dirichlet boundary condition at x = 0. More precisely,
the limit homogenized problem is (see Theorem 3.1 and Figure 3.2):



−D1
d2

dx2
u = νσ1u in Ω1,

−D2
d2

dx2
u = νσ2u in Ω2,

u = 0 on ∂Ω1 ∪ ∂Ω2.

If α < 0, the situation is completely different since the first eigenfunction
concentrates exponentially fast at the interface. In this latter case, there is no
factorization principle as in Theorem 1.1, but rather a localization principle at the
discontinuity (see Theorem 3.5 and Figure 3.3). The first eigenvalue λε1 converges
to a limit 0 < λ1 < µ1 = µ2, and 0 < λε1 − λ1 < C exp(−τ/ε), whereas the first
normalized eigenvector satisfies∥∥∥∥ d

dx
φε1(x)−

1√
ε

d

dx

(
Ψ
( x

ε

))∥∥∥∥
L2(Ω)

+
∥∥∥∥φε1(x)− 1√

ε
Ψ
( x

ε

)∥∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
.

The limit function Ψ ∈ H1(R) decreases exponentially away from the interface,
since it is given by

Ψ(x) =
{
ψ1,θ1(x) for x < 0,
ψ2,θ2(x) for x > 0,

with λ1 = µ1(θ1) = µ2(θ2), and each of the eigenpairs
(
µi(θi), ψi,θi

)
being the

first eigencouple of the following spectral cell problem:
− d

dx

(
ai (x)

dψi,θi

dx

)
+ Σi(x)ψi,θi = µi(θi)σi(x)ψi,θi in [0, 1],

x → ψi,θi (x)e
−θi x 1-periodic.

(1.10)

The required properties of the θ-parameterized family of spectral cell problems
(1.10) are given in Section 2.

We now turn to the case µ1 �= µ2, and with no loss of generality we assume
µ1 > µ2. In this case too, the spectral cell problems (1.10) govern the limit behavior
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of (1.1). We introduce a positive parameter θ0 > 0, such that µ1(θ0) = µ2, and
another discontinuity constant (see Lemma 3.9)

α(θ0) = a1(0)
dψ1,θ0

dy
(0)− a2(0)

dψ2

dy
(0).

The sign of this new discontinuity constant determines the asymptotic behavior of
(1.1).

Ifα(θ0) > 0, the eigenfunctionsφεm concentrate in the sub-domain Ω2 where the
first periodic eigenvalue is the smallest (see Theorem 3.8 in the simpler case when
α ≥ 0, and Theorem 3.11 whenα(θ0) > 0). More precisely, the limit ofφεm vanishes
in the sub-domain Ω1. Introducing the factorization φεm(x) = uεm(x)ψ2(x/ε) in Ω2,
the homogenized problem for the limit of uεm is simply (see Figure 3.4)

−D2
d2

dx2
u = νσ2u in Ω2,

u = 0 on ∂Ω2.

The case α (θ0) = 0 corresponds to the limit between localization at the interface
and concentration in Ω2. The limit of the eigenfunction φεm still vanishes in Ω1, but
in the homogenized problem the Dirichlet boundary condition at x = 0 is replaced
by a Neumann boundary condition (see Theorem 3.12)


−D2

d2

dx2
u = νσ2u in Ω2,

u(L) = 0 and
du

dx
(0) = 0.

Finally, when α (θ0) < 0, a localization phenomenon appears, and the first eigen-
function concentrates exponentially fast at the interface. The result is then similar
to the one obtained when µ1 = µ2 and α < 0 (see Theorem 3.10).

Our main results are stated in Section 3, when µ1 is equal to and not equal
to µ2. Before that, in Section 2, we give a few technical results on the spectral
cell problems that are crucial not only for the proof, but also for the statement of
our main results. Section 4 contains the proofs when the discontinuity constant is
positive, α ≥ 0, while Section 5 focuses on the localization phenomena, namely
α < 0 or α(θ0) < 0. Section 6 contains the proofs in the special situation when
α < 0 but no localization occurs (α(θ0) ≥ 0), as it can happen when µ1 is not
equal to µ2. Section 7 contains the proof of a crucial technical result about the Hill
equation in one dimension.

2. Cell problems

In order to state precisely our convergence results, the knowledge of the spectral
cell problem (1.3) is not enough. As in [8], we need to introduce a parameterized
family of spectral cell problems. They are reminiscent of the so-called Bloch wave
decomposition (see e.g. [13], [24]), but they involve real exponentials instead of
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complex ones. All the results in this section are proved under the assumption that
the periodic coefficients ai,Σi, σi are positive, bounded, measurable functions,
except Proposition 2.2 which asks for more smoothness or piecewise constant
coefficients.

Lemma 2.1. For each θ ∈ R there exists a unique first eigencouple (ψi,θ , µi(θ)),
of the problem


− d

dx

(
ai(x)

dψi,θ

dx

)
+ Σi(x)ψi,θ = µi(θ)σi(x)ψi,θ in [0, 1],

x → ψi,θ(x)e−θx 1-periodic and positive,

(2.1)

which is normalized by

ψi,θ(0) = 1. (2.2)

The map θ → µi(θ) is strictly concave with a maximum at θ = 0, and satisfies the
following inequalities:

cθ2 ≤ µi(0)− µi(θ) ≤ Cθ2,

where C and c are positive constants, independent of θ .

A further property of the first eigenfunction ψi,θ , is given in the next proposition.
Its proof is quite delicate and relies on purely 1-D arguments (we postpone it until
Section 7). We give two different proofs: first, the case of C2 coefficients, which
allows us to perform a Liouville transformation and to use classical results on
the 1-D Hill equation; second, the case of piecewise constant coefficients, which
permits us to do explicit computations.

Proposition 2.2. Assuming that the coefficients are C2 or piecewise constant, for
each θ ∈ R the first eigenvector ψi,θ of Problem (2.1) with the normalization
ψi,θ(0) = 1 satisfies

lim
θ→−∞

dψi,θ

dx
(0) = −∞ and lim

θ→+∞
dψi,θ

dx
(0) = +∞.

Proof of Lemma 2.1. By introducing the change of variable

φi,θ(x) = ψi,θ(x)e
−θx,

Equation (2.1) is equivalent to


− d

dx

(
ai

dφi,θ

dx

)
− θ

(
d

dx

(
aiφi,θ

)+ ai
dφi,θ

dx

)
+ (Σi − aiθ

2
)
φi,θ = µi(θ)σiφi,θ in [0, 1],

x → φi,θ(x) 1-periodic and positive,

(2.3)
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with the same normalization condition

φi,θ(0) = 1.

The existence of a unique first positive eigencouple for Problem (2.3) is known,
see e.g. [15, Theorem 8.38], and we have φi,θ ∈ H1

# ([0, 1]) ∩ C0,s([0, 1]), with
s > 0. In particular, this implies that C > φi,θ(x) > c > 0 in [0, 1]. It is proved in
[8] that the function θ → µi(θ) is smooth, strictly concave on all R, and reaches
its maximum at θ = 0.

To obtain the growth condition on µi(θ), we perform the following change of
unknown:

uθ(x) = ψi,θ(x)

ψi,0(x)
,

which is licit by virtue of Proposition 4.1. Then, uθ is a solution of the following
problem: 


− d

dx

(
b(x)

duθ
dx

)
= µ(θ)s(x)uθ in [0, 1],

x → uθ(x)e−θx 1-periodic ,
(2.4)

with b(x) = ai(x)ψ2
i,0(x), s(x) = σi(x)ψ2

i,0(x), and µ(θ) = µi(θ)− µi(0). These
coefficients are bounded, and we can therefore apply Lemma 2.3. ��
Lemma 2.3. Let b and s be measurable functions on [0, 1], bounded above and
below by two positive constants M > m > 0. For each θ ∈ R the first eigenvalue
µ(θ) of Problem (2.4) satisfies

m

M
θ2 ≤ −µ(θ) ≤ M

m
θ2.

Proof. We already know that µ(θ) < 0 for all θ �= 0. We can assume that θ > 0
since changing the sign of θ in (2.4) is equivalent to considering its adjoint equation
which has the same first eigenvalue. Because we are working in one space dimen-
sion, (2.4) can be written as a system of ordinary differential equations. Namely,
denoting by ′ the x-derivation,

Y ′(x) = A(x)Y(x) and A =
[

0 b−1

−µ(θ)s 0

]
and Y =

(
Y1 = uθ

Y2 = bu′
θ

)
. (2.5)

By enforcing the normalization uθ(0) = Y1(0) = 1, the Krein–Rutman Theorem
implies that Y1 is positive, and thus Y2 is increasing. Since Y2(n) = enθY2(0), and
θ > 0, this implies that Y2(0) > 0, and thus Y2(x) > 0 for x ≥ 0. This in turn
gives, by the first equation, that Y1 is increasing, thus Y1 ≥ 1 for x ≥ 0. Because
Y1 and Y2 are positive functions on R+, we can write

A−Y ≤Y ′ ≤ A+Y with A+ =
[

0 m−1

−µ(θ)M 0

]
, and A− =

[
0 M−1

−µ(θ)m 0

]
.
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Since the matrices A+ and A− have constant coefficients, it is straightforward to
obtain the solutions of the initial value problems

Z ′ = −(A−)T Z, Z(0) = Z0, and X ′ = −(A+)T X, X(0) = X0.

In particular, the choice Z0 = X0 = (
1, (−µ(θ)mM)−1/2) leads to the positive

solutions

Z(x) = Z0 exp

(
−x

√−µ(θ)m
M

)
and X(x) = X0 exp

(
−x

√−µ(θ)M
m

)
.

We can compute that (Y · Z)′ = Y ′ · Z + Y · Z ′ = (
Y ′ − A−Y

) · Z ≥ 0 since Z is
positive. Thus Y · Z ≥ Y(0) · Z(0) for all x ≥ 0, and choosing x = n ∈ N leads to

Y(n) · Z(n) = exp

(
n

(
θ −

√
(−µ(θ))m

M

))
Y(0) · Z(0) ≥ Y(0) · Z(0),

and therefore θ ≥
√
(−µ(θ))m

M . Similarly, we have (Y · X)′ = (
Y ′ − A+Y

) · X ≤ 0
since X is positive, which in turn gives, for all n,

Y(n) · X(n) = exp

(
n

(
θ −

√
(−µ(θ))M

m

))
Y(0) · X(0) ≤ Y(0) · X(0),

and therefore θ ≤
√
(−µ(θ))M

m . ��
Remark 2.4. Lemma 2.3 can be generalized to higher space dimensions by using
the maximum principle. It is proved in [10] that, in general, θ → µ(θ) is a strictly
concave function, i.e., that on any bounded subset K ⊂ RN (with N the space

dimension), the Hessian matrix H =
(
∂2µ
∂θi∂θ j

)
1≤i, j≤N

is negative definite and

Hx · x ≤ −C(K )x · x with C(K ) > 0. The functionµ(θ) achieves its maximum in
0 and lim|θ|→∞µ(θ) = −∞.

3. Main results

In the spirit of the method of proof of Theorem 1.1 (see [5]), we introduce in (1.1)
the change of unknown

uε(x) = φε(x)

ψ
(
x, x

ε

) ,
with a function ψ(x, y) defined by

ψ(x, y) = χ1(x)ψ1(y)+ χ2(x)ψ2(y), (3.1)

where (ψ1, µ1) and (ψ2, µ2) are the first eigencouples in each periodic cell of
(1.3). By our normalization condition (1.7), the function ψ(x, x/ε) is continuous
at the interface x = 0. On the contrary, the function a(x, x/ε)(dψ(x, x/ε))/(dx)
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is not necessarily continuous and its jump at the interface is measured by the
discontinuity constant α introduced in (1.8).

The first result concerns the special case when the first cell eigenvalues of (1.3)
are equal, µ1 = µ2, and the discontinuity constant is non-negative, α ≥ 0. Under
these assumptions, we obtain a generalization of Theorem 1.1.

Theorem 3.1. Let λεm and φεm be the m-th eigenvalue and normalized eigenvectors
of (1.1). Assume that the discontinuity constant defined in (1.8) is non-negative
α ≥ 0, and that µ1 = µ2. Then

φεm(x) = uεm(x)ψ
(

x,
x

ε

)
and λεm = µ1 + ε2νm + o(ε2),

up to a sub-sequence, uεm converges weakly in H1
0 (Ω) towards um, and (νm , um) is

the m-th eigencouple of the homogenized problem, which, if α = 0, is


− d

dx

((
χ1(x)D1 + χ2(x)D2

) du

dx

)
= ν (χ1(x)σ1 + χ2(x)σ2) u in Ω,

u = 0 on ∂Ω,

(3.2)

and, if α > 0, is 


−D1
d2

dx2
u = νσ1u in Ω1,

−D2
d2

dx2
u = νσ2u in Ω2,

u = 0 on ∂Ω1 ∪ ∂Ω2.

(3.3)

In both cases, the homogenized coefficients are defined by Formula (1.5) for each
half domain.

As an illustration of Theorem 3.1, we present some direct computations of the
first eigenfunction φε1 of Problem (1.1). The case µ1 = µ2 and α = 0 is shown on
Figure 3.1. (The domain is composed of a homogeneous medium on the left and
an heterogeneous one on the right). The case µ1 = µ2 and α > 0 is shown on
Figure 3.2 (the domain is composed of two heterogeneous media with the same
cell coefficients but with a constant phase shift between the right and the left). The
data used for the computation is presented in Remark 3.7.

Remark 3.2. Of course, since the homogenized coefficients are constant in each
sub-domain we can compute explicitly the eigenvalues of the homogenized prob-
lems in Theorem 3.1.

Remark 3.3. There is a simple sufficient condition for having well-connected me-
dia, i.e., α = 0. If all coefficients satisfy a central symmetry condition, i.e., are
symmetric with respect to the center of the unit cell [0, 1], then it is easy to check
that ψi satisfies a Neumann boundary condition at x = 0 and x = 1, and there-
fore α = 0. Actually, Theorem 3.1 was already proved by Malige [18] under this
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Fig. 3.1. First eigenfunction for Problem (1.1) in the case of two well-connected media, i.e.,
α = 0

Fig. 3.2. First eigenfunction for Problem (1.1) in the case of non-well-connected media
with a positive discontinuity constant α > 0

assumption. The symmetry was used for the construction of the example shown in
Figure 3.1: in Ω2, the periodic coefficients are piecewise constant on (0.3, 0.7) and
(0.1, 0.3) ∪ (0.7, 1.0); in Ω1, a1 ≡ 1, σ1 ≡ 1 and Σ1 = µ2.

Remark 3.4. When α > 0, the homogenized problem is posed on two disjoint
sub-domains Ω1 and Ω2. In other words, there are two decoupled homogenized
problems. Therefore, there always exist two non-negative eigenfunctions with
disjoint supports, u1(x) = sin(−π

l x)χ1(x) corresponding to the eigenvalue ν1 =
π2 D1

σ1l2
and u2(x) = sin( πL x)χ2(x) corresponding to the eigenvalue ν2 = π2 D2

σ2 L2 .

If the first eigenvalues in each sub-domain are distinct, e.g., L2σ2 D1 > l2σ1 D2,
the first factorized eigenfunction uε1 will tend to u2, i.e., will concentrate in the
sub-domain that has the smallest first eigenvalue and converge to zero in the other
one. In the other case where the first eigenvalues in Ω1 and Ω2 are equal, the first
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eigen-subspace is of dimension 2, span by u1 and u2 and the uniqueness of the
limit of φε1 is lost (on Figure 3.2 the limit seems to be a linear combination of the
first eigenfunctions on each sub-domain).

Our second result completes the case µ1 = µ2 when the discontinuity constant
is negative, α < 0. Under these assumptions, we obtain a localization phenomena.

Theorem 3.5. Let (λε1, φ
ε
1) be the first normalized eigencouple of (1.1). Assume

that µ1 = µ2 and α < 0. Then, there exists a unique λ1 > 0 and a unique positive
Ψ(x) ∈ H1(R) such that

0 ≤ λε1 − λ1 ≤ C exp
(
−τ
ε

)
and∥∥∥∥ d

dx
φε1(x)−

1√
ε

d

dx

(
Ψ
( x

ε

))∥∥∥∥
L2(Ω)

+
∥∥∥∥φε1(x)− 1√

ε
Ψ

(
x

ε

)∥∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
,

where C and τ are positive constants, independent of ε. The limit eigenvalue
satisfies λ1 < µ1 = µ2, and the limit eigenfunction is defined by

Ψ(x) =
{
ψ1,θ1(x) for x < 0,

ψ2,θ2(x) for x > 0,

with θ1 > 0 and θ2 < 0, and
(
λ1, ψi,θi

)
is the first eigencouple of the cell problem

(2.1), i.e.,


− d

dx

(
ai (x)

dψi,θi

dx

)
+ Σi(x)ψi,θi = λ1σi(x)ψi,θi in [0, 1],

x → ψi,θi (x)e
−θi x 1-periodic .

Remark 3.6. Theorem 3.5 is illustrated by Figure 3.3: the first eigenvector of
system (1.1) converges exponentially fast towards a localized eigenfunction near
the interface between the two domains. Furthermore, the corresponding eigenvalue
is smaller thanµ1 = µ2, which is the limit obtained in all the other cases. In contrast
with Theorem 3.1, no factorization, or limit homogenized problem appears in the
wording of Theorem 3.5. The limit eigenfunction Ψ contains both the periodical
oscillations and the macroscopic trend.

Remark 3.7. The computations shown on Figure 3.2 and Figure 3.3 were performed
with the same two media, but their positions are switched with respect to the
interface when passing from one case to the other. We take −l = L = 1 with 100
periodicity cells, which yields ε = 0.02. All the more the periodic cell coefficients
for the two media are the same up to a phase shift in the unit cell. More precisely,
in Figure 3.2 the coefficients are a1(y) = a(y), a2(y) = a(y + c), Σ1(y) = Σ(y),
Σ2(y) = Σ(y + c), σ1(y) = σ(y), σ2(y) = σ(y + c), while in Figure 3.3 they
are a1(y) = a(y + c), a2(y) = a(y), Σ1(y) = Σ(y + c), Σ2(y) = Σ(y), σ1(y) =
σ(y + c), σ2(y) = σ(y), where c = 0.6 is a constant phase shift, and a, Σ and
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Fig. 3.3. First eigenfunction for Problem (1.1) in the case of non-well-connected media
with a negative discontinuity constant α < 0

σ are periodic functions. Each periodicity cell is made of three different media or
constituents arranged in a specified order as follows:

(a,Σ, σ) =




(aI ,ΣI , σI ) if 0 < y < 0.1

(aII ,ΣII , σII ) if 0.1 < y < 0.5

(aIII ,ΣIII , σIII ) if 0.5 < y < 0.8

(aI ,ΣI , σI ) if 0.8 < y < 1,

with

Constituent I aI = 0.9666 ΣI = 2.1080 σI = 2.8283

Constituent II aII = 2.0086 ΣII = 2.3878 σII = 2.9451

Constituent III aIII = 2.0444 ΣIII = 2.9945 σIII = 1.1493.

Note that, by construction, µ1 = µ2 ≈ 1.3863. The shape of the first eigenvector
φε1 on Figure 3.2 (with eigenvalue λε1 ≈ 1.3899), corresponds to what is announced
by Theorem 3.1: asymptotically, both media tend to separate when α > 0. There-
fore, by symmetry, Figure 3.3 corresponds to a situation where α < 0: the first
eigenvector concentrates exponentially at the interface between the two media. The
numerical calculation confirms that the corresponding eigenvalue (λε1 ≈ 1.3720)
is below that of the periodicity cell. This phenomenon is explained by Lemma 5.4
which gives a necessary and sufficient condition for the existence of a localized
eigensolution.

We now turn to the general case µ1 �= µ2. In the following, we shall assume,
without loss of generality, that

µ1 > µ2.

If the discontinuity constant is non-negative, i.e., α ≥ 0, the eigenfunctions con-
centrate asymptotically in the sub-domain Ω2, where the first periodic eigenvalue
is the smallest.
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Fig. 3.4. First eigenfunction of (1.1) in the case of two media with µ1 > µ2 and α = 0

Theorem 3.8. Let λεm andφεm be the m-th eigenvalue and normalized eigenfunction
of (1.1). Assume that α ≥ 0 and µ1 > µ2. Then,

φεm(x) = uεm(x)ψ
(

x,
x

ε

)
and λεm = µ2 + ε2νm + o(ε2),

where, up to a sub-sequence, uεm converges weakly in H1
0 (Ω) to um, with um = 0

in Ω1 and (νm, um) is the m-th eigenpair of the following homogenized problem:


−D2
d2

dx2
um = νmσ2um in Ω2,

um = 0 on ∂Ω2,

(3.4)

and the homogenized coefficients are still given by (1.5).

Figure 3.4 illustrates Theorem 3.8. It displays the first eigenfunction φε1 in
the case of two media with symmetric periodic structures (so that α = 0), with
µ1 � 1.58 and µ2 � 0.43, and 20 periodic cells on each side of the interface.

When µ1 > µ2, a localization phenomenon can also occur. Let us first remark
that, as an obvious consequence of Lemma 2.1, we have the following result:

Lemma 3.9. For all µ1 > µ2 there exists a unique θ0 > 0 such that µ1(θ0) = µ2.

Indeed, Lemma 3.9 is obvious by remarking that µ1(θ), defined in Lemma 2.1,
is a concave function with quadratic growth at infinity and reaching its maximum
at θ = 0, µ1(0) = µ1 > µ2. The first eigenvectors corresponding to µ2 and
µ1(θ0) are denoted by ψ2 and ψ1,θ0 . They are continuous at the interface, i.e.,
ψ2(0) = ψ1,θ0(0) = 1, and we introduce a new discontinuity constant that will
characterize the localization phenomenon

α(θ0) = a1(0)
dψ1,θ0

dy
(0)− a2(0)

dψ2

dy
(0).
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Theorem 3.10. Let (λε1, φ
ε
1) be the first normalized eigencouple of (1.1). Assume

thatα(θ0) < 0. Then, there exists a uniqueλ1 > 0 and a unique positive Ψ ∈ H1(R)

such that

0 ≤ λε1 − λ1 ≤ C exp
(
−τ
ε

)
and (3.5)∥∥∥∥ d

dx
φε1(x)−

1√
ε

d

dx

(
Ψ
( x

ε

))∥∥∥∥
L2(Ω)

+
∥∥∥∥φε1(x)− 1√

ε
Ψ
( x

ε

)∥∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
,

where C and τ are positive constants, independent of ε. The limit eigenvalue
satisfies λ1 < µ2 < µ1, and the limit eigenfunction is defined by

Ψ(x) =
{
ψ1,θ1(x) for x < 0,

ψ2,θ2(x) for x > 0,

with θ1 > 0 and θ2 < 0, and (λ1, ψi,θi ) is the first eigencouple of the cell problem
(2.1), i.e.,


− d

dx

(
ai (x)

dψi,θi

dx

)
+ Σi(x)ψi,θi = λ1σi(x)ψi,θi in [0, 1],

x → ψi,θi (x)e
−θi x 1-periodic.

Finally, in the remaining case α < 0 and α(θ0) ≥ 0, there is no localization, and
the eigenfunctions still concentrate asymptotically in the sub-domain Ω2 where the
first periodic eigenvalue is the smallest. When α(θ0) > 0, the limit problem has
Dirichlet boundary conditions. When α(θ0) = 0, the limit problem has a Neumann
boundary condition at the interface.

Theorem 3.11. Let λεm and φεm be the m-th eigenvalue and normalized eigenfunc-
tion of (1.1). Assume that µ1 > µ2, α < 0 and α(θ0) > 0. Then,

λεm = µ2 + ε2νm + o(ε2), φεm(x) → 0 in L2(Ω1)

and

φεm(x) = uεm(x)ψ2

( x

ε

)
,

where, up to a sub-sequence, uεm converges weakly in H1(Ω2) to um, and (νm , um)

is the m-th eigenpair of the following homogenized problem:


−D2
d2

dx2
um = νmσ2um in Ω2,

um = 0 on ∂Ω2,

(3.6)

and the homogenized coefficients are still given by (1.5).
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Theorem 3.12. Let λεm and φεm be the m-th eigenvalue and normalized eigenfunc-
tion of (1.1). Assume that µ1 > µ2, α < 0 and α(θ0) = 0. Then,

λεm = µ2 + ε2νm + o(ε2), φεm(x) → 0 in L2(Ω1)

and

φεm(x) = uεm(x)ψ2

( x

ε

)
,

where, up to a sub-sequence, uεm converges weakly in H1(Ω2) to um, and (νm , um)

is the m-th eigenpair of the following homogenized problem:


−D2
d2

dx2
um = νmσ2um in Ω2,

um(L) = 0, and
dum

dx
(0) = 0,

(3.7)

and the homogenized coefficients are still given by (1.5).

Remark 3.13. Note that the homogenized problems of Theorems 3.11 and 3.12
(corresponding to α(θ0) > 0 and α(θ0) = 0, respectively) are similar except the
boundary condition at x = 0. Then a simple computation shows that the first
homogenized eigenvalue ν1 is four times smaller when α(θ0) = 0 than when
α(θ0) > 0.

Remark 3.14. At the difference of Theorem 3.8, we do not prove in Theorems 3.11
and 3.12 that the factorized eigensolutions uεm have bounded gradients in all of Ω,
but simply within Ω2. It is, therefore, difficult (at least for us) to study the possible
occurrence of boundary layers in Ω1. In the limit case of Theorem 3.12, because of
the homogenized Neumann boundary condition at x = 0, we expect a non-trivial
boundary layer in Ω1.

Remark 3.15. The generalization of the results of this section to higher space di-
mensions is not obvious for at least two reasons. First, Theorems 3.5 and 3.10
rely on Proposition 2.2 which is proved only in one dimension (by using o.d.e.
techniques). Second, even Theorems 3.1 and 3.8 (which do not depend on Proposi-
tion 2.2) are not straightforward in higher dimensions because we can not assume
a perfect transmission condition (1.7) at the interface. Of course, if it happens by
chance that, for a dimension N > 1, we have

ψ1,θ0(0, y′) = ψ2(0, y′) (3.8)

for almost every y′ ∈ [0, 1]N−1, and

0 ≤ α(y′) = a1(0, y′)
dψ1,θ0

dy
(0, y′)− a2(0, y′)

dψ2

dy
(0, y′) ≤ M < +∞, (3.9)

then Theorems 3.1 and 3.8 extend easily since, at the interface, the problem is
essentially one dimensional (see [9]). Of course, these conditions are very strict
and almost never satisfied in practice. In general, we believe that boundary layers
at the interface must be taken into account.
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Remark 3.16. Throughout this paper we assume that, after rescaling by ε, the
periodicity on both sides of the interface is exactly one. The fact that the period is
the same in Ω1 and Ω2 is not important, and this is purely for convenience that we
made this choice. All our results apply if the two periods are different, provided
that the discontinuity constants α and α(θ0) are properly defined.

4. Proofs in the case α ≥ 0

In order to prove Theorems 3.1 and 3.8, we first need to justify the factorization
φε(x) = uε(x)ψ

(
x, x

ε

)
. This is the goal of the next Proposition which is a general-

ization of a previous result of [5] (see also [3]).

Proposition 4.1. Let ψ(x, y) be the function defined by (3.1). Then, the linear
operator T defined by

T : H1
0 (Ω) → H1

0 (Ω)

φ(x) → φ(x)

ψ
(
x, x

ε

)
is bounded, invertible and bicontinuous.

Proof. Thanks to the normalization condition (1.7) the function ψ(x, x/ε) is con-
tinuous on R. By virtue of Lemma 2.1 we know that there exist two positive
constants C > c > 0 such that C ≥ ψ1(y), ψ2(y) ≥ c for all y ∈ [0, 1], and these
bounds also hold for ψ. Therefore, for all φ ∈ H1

0 (Ω), if we define u = T (φ), we
have

C−1 ‖φ‖L2(Ω) ≤ ‖u‖L2(Ω) ≤ c−1 ‖φ‖L2(Ω) , (4.1)

and T is an homeomorphism on L2(Ω). On the other hand,∫
Ω

a
dφ

dx

dφ

dx
=
∫

Ω1

a1ψ
2
1

du

dx

du

dx
+
∫

Ω2

a2ψ
2
2

du

dx

du

dx

+
∫

Ω1

a1
dψ1

dx

d(u2ψ1)

dx
+
∫

Ω2

a2
dψ2

dx

d(u2ψ2)

dx
.

(4.2)

Equation (1.3) defining ψ1(x/ε) tested against u2(x)ψ1(x/ε) can be written∫
Ω1

a1
dψ1

dx

d(u2ψ1)

dx
− 1

ε
a1(0)

dψ1

dy
(0)u2(0)= 1

ε2

(
µ1

∫
Ω1

σ1ψ
2
1 u2−

∫
Ω1

Σ1ψ
2
1 u2
)
,

(4.3)

and similarly we have∫
Ω2

a2
dψ2

dx

d(u2ψ2)

dx
+ 1

ε
a2(0)

dψ2

dy
(0)u2(0)= 1

ε2

(
µ2

∫
Ω2

σ2ψ
2
2 u2−

∫
Ω2

Σ2ψ
2
2 u2
)
.

(4.4)
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When we replace (4.3) and (4.4) in (4.2) we obtain∫
Ω

a
(

x,
x

ε

) dφ

dx

dφ

dx
dx + 1

ε2

∫
Ω

Σ
(

x,
x

ε

)
φ2 dx (4.5)

=
2∑

i=1

∫
Ωi

ai

( x

ε

)
ψ2

i

( x

ε

) du

dx

du

dx
dx

+ 1

ε2

2∑
i=1

∫
Ωi

µiσi

( x

ε

)
ψ2

i

( x

ε

)
u2 dx

+ 1

ε
α u2(0),

where α is the discontinuity constant given by (1.8). If α ≥ 0, all the left-hand
side terms are non-negative in (4.5). Since a1, a2, ψ1 and ψ2 are bounded below
by positive constants, we can deduce that

∥∥∥∥du

dx

∥∥∥∥
2

L2(Ω)

+ ‖u‖2
L2(Ω)

≤ C(ε)

(∥∥∥∥dφ

dx

∥∥∥∥
2

L2(Ω)

+ ‖φ‖2
L2(Ω)

)
. (4.6)

Conversely, we have

0 ≤ α u2(0) ≤ C
∫

Ω

(
du

dx

)2

dx, (4.7)

therefore we also obtain from (4.5) that

∥∥∥∥dφ

dx

∥∥∥∥
2

L2(Ω)

+ ‖φ‖2
L2(Ω)

≤ C(ε)

(∥∥∥∥du

dx

∥∥∥∥
2

L2(Ω)

+ ‖u‖2
L2(Ω)

)
, (4.8)

and this concludes the proof of the proposition for α ≥ 0. If α ≤ 0, note that thanks
to the normalization condition (1.7), u2(0) = φ2(0). Consequently, identity (4.5)
is also∫

Ω

a
(

x,
x

ε

)(dφ

dx

)2

dx + 1

ε2

∫
Ω

Σ
(

x,
x

ε

)
φ2 dx − 1

ε
αφ2(0)

=
2∑

i=1

∫
Ωi

ai

( x

ε

)
ψ2

i

( x

ε

)(du

dx

)2

dx + 1

ε2

2∑
i=1

∫
Ωi

µiσi

( x

ε

)
ψ2

i

( x

ε

)
u2 dx.

We therefore obtain the same conclusion, reversing the positions of u and φ in
(4.6–4.8). ��

If we proceed to the change of unknown uε = T(φε), Problem (1.1) is trans-
formed into a new eigenvalue problem, where the singular perturbation in front of
the divergence term has disappeared. Proposition 4.2 gives the form of this new
problem after some simple algebra.
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Proposition 4.2. Introducing uε(x) = φε(x)/ψ
(
x, x

ε

)
, (1.1) is equivalent to the

following eigenvalue problem:




− d

dx

(
D
(

x,
x

ε

) duε

dx

)
+ µ1 − µ2

ε2
χ1(x)B

(
x,

x

ε

)
uε

+ ε−1αuε(0)δ(x) = νεB
(

x,
x

ε

)
uε

uε = 0 on ∂Ω,

in Ω (4.9)

where δ(x) is the Dirac function, the (positive) diffusion coefficient is defined by

D
(

x,
x

ε

)
= χ1(x)ψ

2
1

( x

ε

)
a1

( x

ε

)
+ χ2(x)ψ

2
2

( x

ε

)
a2

( x

ε

)
,

the (positive) coefficient B by

B
(

x,
x

ε

)
= χ1(x)ψ

2
1

( x

ε

)
σ1

( x

ε

)
+ χ2(x)ψ

2
2

( x

ε

)
σ2

( x

ε

)
,

and the new eigenvalue by

νε = λε − µ2

ε2
.

Remark 4.3. We proved Proposition 4.1 regardless of the sign of α, therefore
Proposition 4.2 is also valid when α < 0. We shall use this equivalent form of (1.1)
in Section 6.

Following a strategy already used in [3], [4], the asymptotic study of the
eigenvalue problem (4.9) relies on the detailed homogenization, as ε tends to zero,
of the following problem:




− d

dx

(
D
(

x,
x

ε

) duε

dx

)
+ µ1 − µ2

ε2
χ1(x)B

(
x,

x

ε

)
uε

+ ε−1αuε(0)δ(x) = fε

uε = 0 on ∂Ω,

in Ω (4.10)

with a right-hand side fε, which is a bounded sequence of L2(Ω), weakly converg-
ing to a limit f ∈ L2(Ω). We first obtain a priori estimates:

Proposition 4.4. If α ≥ 0, the solution uε of Equation (4.10) satisfies

‖uε‖H1
0 (Ω)

+ µ1 − µ2

ε
‖uε‖L2(Ω1)

+
√
α

ε
‖uε(0)‖ ≤ C ‖ fε‖L2(Ω) , (4.11)

where C is a constant independent of ε. Therefore, up to a sub-sequence, uε

converges weakly to a limit u in H1
0 (Ω). Furthermore,
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• if µ1 > µ2, the limit u vanishes in Ω1 and thus belongs to H1
0 (Ω2);

• if µ1 = µ2 and α > 0, the limit satisfies u(0) = 0 and thus can be written
u = u1 + u2 with u1 ∈ H1

0 (Ω1) and u2 ∈ H1
0 (Ω2).

Proof. If we variationally test Equation (4.10) defining uε against uε, we obtain∫
Ω

D
(

x,
x

ε

)(duε

dx

)2

dx + µ1 − µ2

ε2

∫
Ω1

B
(

x,
x

ε

)
(uε)2 dx

+ 1

ε
α(uε)2(0) =

∫
Ω

fεu
ε dx.

Since D and B are bounded below by a positive constant, and since we assume that
µ1 ≥ µ2 and α ≥ 0, we obtain∥∥∥∥duε

dx

∥∥∥∥
2

L2(Ω)

+ µ1 − µ2

ε2
‖uε‖2

L2(Ω1)
+ α

ε
‖uε(0)‖2 ≤ C ‖ fε‖L2(Ω) ‖uε‖L2(Ω) ,

which yields the desired result thanks to the Poincaré inequality.

Lemma 4.5. Let Sε be the operator defined by

Sε : L2(Ω) → L2(Ω)

f → uε unique solution in H1
0 (Ω)

of Equation (4.10) with r.h.s. f.
(4.12)

For all fixed ε > 0, Sε is a linear compact operator in L2(Ω).

This result is a consequence of the a priori estimate (4.11) and of the compact
inclusion of H1

0 (Ω) in L2(Ω). We shall show the following result:

Proposition 4.6. Let fε be a weakly converging sequence to a limit f in L2(Ω).
The sequence uε = Sε( fε) weakly converges in H1

0 (Ω) towards u0 defined by
u0 = S( f ).

1. If α = 0 and µ1 = µ2, then S is the following compact operator:

S : L2(Ω) → L2(Ω)

f → u unique solution of


− d

dx

((
χ1(x)D1 + χ2(x)D2

) d

dx
u(x)

)
= f in Ω,

u = 0 on ∂Ω,

where D1 and D2 are given by (1.5).
2. If α ≥ 0 and µ1 > µ2, then S is the following compact operator:

S : L2(Ω) → L2(Ω)

f → u unique solution of


−D2
d2

dx2
u(x) = f in Ω2,

u = 0 on Ω \ Ω2.
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3. If α > 0 and µ1 = µ2, then S is the following compact operator:

S : L2(Ω) → L2(Ω)

f → u unique solution of


−D1
d2

dx2
u(x) = f in Ω1,

−D2
d2

dx2
u(x) = f in Ω2,

u = 0 on ∂Ω2 ∪ ∂Ω2.

Proof. The proof is quite standard in homogenization theory. For example, using
the notion of two-scale convergence (see [1], [22]) it is an easy exercise that we
safely leave to the reader (the details can be found in [9] if necessary). Let us simply
remark that, ifµ1 = µ2 and α = 0, then the homogenization of (4.10) is completely
obvious. If µ1 = µ2 and α > 0, then the a priori estimates of Proposition 4.4 show
that uε(0) goes to zero, while, if µ1 > µ2 and α ≥ 0, they imply that uε goes to
zero in Ω1. ��
We are now able to conclude the proofs of Theorems 3.1 and 3.8.

Proof of Theorems 3.1 and 3.8. Let us first remark that Proposition 4.6 implies that
the sequence of operators Sε, defined by (4.12), uniformly converges to the limit
operator S. The asymptotic analysis of the eigenvalue problem (4.9) is truly given
by that of Tε, given by,

Tε : L2(Ω) → L2(Ω)

f → Sε
(

B
(

x,
x

ε

)
f
)
.

The eigenvalues of Tε being the inverse of that of (4.9). Introducing σ(x) =∫ 1
0 B(x, y)dy, which is the weak limit of B(x, x

ε
),we define the limit operator T by

T : L2(Ω) → L2(Ω)

f → S (σ f ) .

The sequence Tε does not uniformly converge to T , but the sequence Tε is never-
theless sequentially compact, in the sense that{∀ f ∈ L2(Ω) limε→0 ‖Tε( f )− T( f )‖L2(Ω) = 0,

the set {Tε( f ), ‖ f ‖L2(Ω) ≤ 1, ε ≥ 0} is sequentially compact.

Theorems 3.1 and 3.8 are then consequences of Theorem 4.7 (see also Chapter 11
in [16]). ��
Theorem 4.7. (see e.g. [7], [12]) Let Tn be a sequence of compact operators that
converges to T . Assume that (Tn)n≥1 is collectively compact and T is compact. Let
µ ∈ C be an eigenvalue of T , of multiplicity m. Let Γ be a smooth curve enclosing
µ in the complex plane and leaving outside the rest of the spectrum of T . Then,
for sufficiently large values of n, Γ also encloses exactly m eigenvalues of Tn and
leaves outside the rest of the spectrum of Tn.
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5. Proofs in the case α(θ0) < 0

The goal of this section is to prove Theorems 3.5 and 3.10. To understand the
asymptotic behavior of problem (1.1) when the discontinuity constant α(θ0) is
negative, we first rescale the equations by introducing the change of variables
y = x

ε
. Then, problem (1.1) is equivalent to




− d

dy

(
a(y)

dϕε

dy

)
+ Σ(y)ϕε = λεσ(y)ϕε in Ωε,

ϕε(−ε−1l) = ϕε(ε−1 L) = 0,

(5.1)

with Ωε =] − ε−1l, ε−1 L[, ϕε(y) = φε( x
ε
), and

a(y) (Σ(y), σ(y), respectively) =
{

a1(y) (Σ1(y), σ1(y), respectively) if y < 0,
a2(y) (Σ2(y), σ2(y), respectively) if y > 0.

As ε goes to 0, the domain Ωε converges to R, and formally the limit problem of
(5.1) is 


− d

dx

(
a(x)

dΨ

dx

)
+ Σ(x)Ψ = λσ(x)Ψ in R,

Ψ ∈ H1(R).

(5.2)

We first recall some properties of the spectrum of (5.2). We introduce the Green
operator S acting in L2(R) defined by

S : L2(R) → L2(R)

f → u unique solution in H1(R) of

− d

dx

(
a(x)

du

dx

)
+ Σ(x)u = σ(x) f in R.

(5.3)

The eigenvalues of S are precisely the inverse of those of (5.2). Nevertheless, to
simplify the discussion we shall say that λ is an eigenvalue of S, or (5.2), if its
inverse belongs to the spectrum of S.

Proposition 5.1. The operator S is self-adjoint and non-compact. Its spectrum can
be decomposed in its discrete and essential part, σ(S) = σdisc(S) ∪ σess(S). The
lower bound of the essential spectrum is equal to the smallest cell first eigenvalue
in (1.3), namely

minσess(S) = min (µ1, µ2) .

If (λ,Ψ) is an eigencouple in the discrete spectrum, then there exist θ1 > 0 and
θ2 < 0 such that

Ψ(x) =
{
ψ1(x) if x < 0,
ψ2(x) if x > 0,
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and (λ,ψi ) is an eigencouple of


− d

dx

(
ai(x)

dψi

dx

)
+ Σi(x)ψi = λσi(x)ψi in [0, 1],

x → ψi(x)e−θi x 1-periodic.

(5.4)

Remark 5.2. By definition, the discrete spectrum of S is composed of isolated
eigenvalues of finite multiplicity, while its essential spectrum is characterized by
the Weyl criterion, i.e., ∀λ ∈ σess(S) there exists a sequence {un} ∈ L2(R) such
that { ‖un‖L2(R) = 1, un → 0 in L2(R) weakly,

(S − λId)un → 0 in L2(R) strongly.

Proposition 5.1 tells us in particular that σess(S) is not empty and that any discrete
eigenvector decays exponentially at infinity. Remark that Equation (5.4) is similar
to (2.1).

Proof. The study of the spectrum of S is classical. The exponential decay of the
discrete eigenfunctions is obtained through Floquet Theory (see, e.g., [20], [24]).
The same tool yields the lower bound of the essential spectrum (see [4], [13]). Note
that these results are obtained under the mere assumption that the coefficients of
Equation (5.3) are positive measurable functions (no smoothness is required). ��

In order to pass to the limit ε → 0 in (5.1), we also introduce an operator Sε
acting in L2(R) defined by

Sε : L2(R) → L2(R)

f → uε unique solution in H1
0 (Ωε) of


− d

dx

(
a(x)

duε

dx

)
+ Σ(x)uε = σ(x) f, in Ωε

uε(x) = 0 on ∂Ωε.

(5.5)

The operator Sε is compact and its eigenvalues are the inverses of that of (5.1).
Unfortunately, the convergence of the sequence Sε to S is not uniform, so that the
limit of the spectrum of Sε is not the spectrum of S. Nevertheless, this limit can be
characterized explicitly and we recall the following result that may be found in [4]:

Proposition 5.3. For all f ∈ L2(R), Sε( f ) converges strongly to S( f ) in L2(R),
and we have

lim
ε→0

σ (Sε) = σ(S) ∪ σBL .

Furthermore, the first eigenvalue λε1 converges to a limit λ1 which does belong to
the spectrum of S and is thus the smallest element of σ(S). We also have

minσBL = minσess(S) = min (µ1, µ2) . (5.6)
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That part of the limit spectrum, denoted by σBL , is called the boundary layer
spectrum. It can be characterized completely in terms of an equation similar to
(5.2) but in the half-line (for details, see [4]). We do not dwell on this boundary
layer spectrum since we only need to know (5.6) in the following:

Lemma 5.4. Let θ0 be defined as in Lemma 3.9, i.e., µ1(θ0) = µ2, and ψ1,θ0 the
corresponding eigenvector defined by (2.1). Let α (θ0) be defined by

α(θ0) = a1(0)
dψ1,θ0

dy
(0)− a2(0)

dψ2

dy
(0).

If and only if

α (θ0) < 0, (5.7)

the limit λ1 of the first eigenvalue λε1 of Problem (1.1) satisfies

λ1 < min(µ1, µ2).

Remark 5.5. In particular, this lemma applies when µ1 = µ2, and α ≡ α(θ0) < 0.
It implies that, when the discontinuity constant is negative, the limit first eigenvalue
cannot be predicted by the homogenized models obtained under a strict periodicity
assumption on each side of the interface. The proof of Lemma 5.4 relies on Propo-
sition 2.2, that we have not been able to prove in the general case, but under the
additional assumption that the coefficients are C2, or piecewise constant.

Proof of Lemma 5.4. For all θ ∈ [θ0,+∞[, where θ0 is defined in Lemma 3.9,
because of the concavity of µ1(θ) and µ2(θ), we can associate to each θ a unique
θ ′ ≤ 0 such that µ1(θ) = µ2(θ

′) and ψ2,θ′ is the first eigenvector defined by


− d

dx

(
a2(x)

dψ2,θ′

dx

)
+ Σ2(x)ψ2,θ′ = µ2(θ

′)σ2(x)ψ2,θ′ in [0, 1]
x → ψ2,θ (x)e−θ′x 1-periodic ,

ψ2,θ′(0) = 1.

(5.8)

Note that for θ = θ0, we have θ ′ = 0. The pair (λ,Ψ) defined by

λ = µ1(θ) = µ2(θ
′)

Ψ = ψ1,θ for x > 0,

Ψ = ψ2,θ′ for x < 0,

is an eigencouple for Problem (5.2) if and only if

α(θ) = a1(0)
dψ1,θ

dx
(0)− a2(0)

dψ2,θ′

dx
(0) = 0. (5.9)

Thanks to Proposition 2.2, we have

lim
θ→+∞α(θ) = lim

θ→+∞ a1(0)
dψ1,θ

dx
(0)− lim

θ′→−∞
a2(0)

dψ2,θ′

dx
(0) = +∞.
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Therefore, if we assume α(θ0) < 0 then Equation (5.9) admits a solution, for some
θ < θ0, and θ ′ > 0. We have thus obtained a value of θ such that λ < min(µ1, µ2).
Finally, since λ1 ≤ λ, by virtue of Proposition 5.1, we have λ1 ∈ σdisc(S).

Conversely, if λ1 < min(µ1, µ2) we know from Proposition 5.6 that on both
sides of the origin the corresponding eigenfunction Ψ has an exponential decay.
Then Proposition 5.1 shows that it must of the form Ψ = cψ1,θ and Ψ = cψ2,θ′ for
some θ and θ ′ on each half line. Since Identity (5.9) is a necessary and sufficient
condition for the existence of such a Ψ, and the proof is complete. ��
Proof of Theorems 3.5 and 3.10. Thanks to Lemma 5.4 and Proposition 5.1, if
Condition (5.7) is satisfied then λ1 is in the discrete spectrum of Problem (5.2).
Theorems 3.5 and 3.10 are then a consequence of Proposition 5.6. Indeed the
eigenfunction φε1(x) in Theorems 3.5 and 3.10 is equal to 1√

ε
ϕε1
(

x
ε

)
, where ϕε1 is

the first eigenfunction in Proposition 5.6. Inequality (5.10) then becomes

ε2

∥∥∥∥ d

dx
φε1 (x)−

1√
ε

d

dx

(
Ψ
( x

ε

))∥∥∥∥
L2(Ω)

+
∥∥∥∥φε1 (x)− 1√

ε
Ψ
(x

ε

)∥∥∥∥
L2(Ω)

≤ C exp
(
−τ
ε

)
,

which in turn implies∥∥∥∥ d

dx
φε1(x)−

1√
ε

d

dx

(
Ψ
(x

ε

))∥∥∥∥
L2(Ω)

+
∥∥∥∥φε1(x)− 1√

ε
Ψ
( x

ε

)∥∥∥∥
L2(Ω)

≤ C′ exp
(

−τ
′

ε

)
,

for any τ ′ < τ . ��
Proposition 5.6. Assume that Problem (5.2), or equivalently operator S, admits
a first positive normalized eigencouple (λ1,Ψ) such that λ1 < min (µ1, µ2). Then
the first positive normalized eigencouple

(
λε1, ϕ

ε
1

)
of (5.1), or of Sε, satisfies

0 ≤ λε1 − λ1 ≤ C exp
(
−τ
ε

)
and

∥∥∥∥ d

dx
ϕε1 − d

dx
Ψ

∥∥∥∥L2(Ωε)
+ ∥∥ϕε1 − Ψ

∥∥
L2(Ωε)

≤ C exp
(
−τ
ε

)
, (5.10)

where C and τ are strictly positive constant independent of ε.

Proof. Since we assumed λ1 < minσess(S), we have

λ1 = min
ϕ∈H1(R)

φ �=0

∫
R

a (x)

∣∣∣∣ d

dx
ϕ

∣∣∣∣
2

dx +
∫
R

Σ (x) φ2dx∫
R

σ (x) ϕ2dx
,
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Fig. 5.1. Cut-off function χ

and this minimum is attained for ϕ = Ψ, which belongs to the discrete spectrum
of S. We also have

λε1 = min
ϕ∈H1

0 (Ωε)

φ �=0

∫
Ωε

a (x)

∣∣∣∣ d

dx
ϕ

∣∣∣∣
2

dx +
∫

Ωε

Σ (x) ϕ2dx∫
Ωε

σ (x) ϕ2dx
,

and this implies, by the inclusion of spaces that λ1 ≤ λε1. Let χ be a smooth cut-off
function, vanishing outside Ωε = ]− l

ε
, L
ε

[
, equal to 1 on

]− l
ε

+ 1, L
ε

− 1
[
, such

that 0 ≤ χ ≤ 1, and dχ
dx does not depend on ε (see Figure 5.1). We then have

χΨ ∈ H1
0 (Ωε), and

λε1 ≤

∫
Ωε

a (x)

∣∣∣∣ d

dx
(χΨ)

∣∣∣∣
2

dx +
∫

Ωε

Σ (x) (χΨ)2 dx∫
Ωε

σ (x) (χΨ)2 dx
. (5.11)

By construction, dχ
dx has its support in [− l

ε
,− l

ε
+ 1] ∪ [ L

ε
− 1, L

ε
] and Inequality

(5.11) becomes

λε1 ≤

∫
R

a(x)

∣∣∣∣ d

dx
Ψ

∣∣∣∣
2

dx +
∫
R

Σ (x)Ψ2dx + Rε1

(
1 − Rε2

) ∫
R

σ (x)Ψ2dx
, (5.12)

with

Rε1 = 2
∫
[
− l
ε ,− l

ε+1
]
∪
[

L
ε −1, L

ε

] a(x) |Ψ(x)|
∣∣∣∣ d

dx
χ

∣∣∣∣
(∣∣∣∣χ d

dx
Ψ

∣∣∣∣+
∣∣∣∣Ψ d

dx
χ

∣∣∣∣
)

dx

and

Rε2 =

∫ − l
ε+1

−∞
σ(x)Ψ(x)2 +

∫ +∞

L
ε −1

σ(x)Ψ(x)2∫
R

σ(x)Ψ(x)2
.
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Thanks to Proposition 5.1, we know that

sup
x∈(−∞,− l

ε )

|Ψ(x)| ≤ C exp
(

−θ1
l

ε

)
, and sup

x∈( L
ε ,+∞)

|Ψ(x)| ≤ C exp
(
θ2

L

ε

)

with θ1 > 0 and θ2 < 0. We can deduce that Rε1 ≤ C exp
(− τ

ε

)
and Rε2 ≤

C exp
(− τ

ε

)
with τ = min(l|θ1|, L|θ2|), and inserting these inequalities in (5.12)

we obtain

λε1 ≤ λ1

(
1 + C exp

(
−τ
ε

))
. (5.13)

Let us now show that ϕε1 converges to Ψ. In order to obtain an approximation
of Ψ that vanishes on the boundaries of the domain Ωε, we add to Ψ an affine
function which compensates its values at both ends of the domain. We define
Ψε(x) = Ψ(x)+ �ε(x), where �ε is the affine function such that

Ψ

(
− l

ε

)
+ �ε

(
− l

ε

)
= 0 and Ψ

(
L

ε

)
+ �ε

(
L

ε

)
= 0.

By construction, Ψε ∈ H1
0 (Ωε), and Ψε is a solution of the same problem than

ϕε1 up to a perturbation rε:


− d

dx

(
a (x)

dΨε

dx

)
+ Σ (x)Ψε = λε1σ (x)Ψ

ε + rε in
]

− l

ε
,

L

ε

[

Ψε
(

− l

ε

)
= Ψε

( L

ε

)
= 0.

(5.14)

The perturbation is rε = (λ1 − λε1)σΨε + Σ�ε − λ1σ�
ε − d

dx

(
a d�ε

dx

)
∈ H−1(Ωε).

The coefficients being bounded, we obtain that for all φ ∈ H1
0 (Ωε),∣∣∣∣

∫
Ωε

rεφ

∣∣∣∣ ≤ C
(
|λ− λε1| + sup

Ωε

|�ε|
)

‖φ‖L2(Ωε)
+ C

∥∥∥∥d�ε

dx

∥∥∥∥
L2(Ωε)

∥∥∥∥dφ

dx

∥∥∥∥
L2(Ωε)

,

where C is a constant which does not depend on ε. From the exponential decay of
Ψ we deduce that

sup
Ωε

|�ε| ≤ C exp
(
−τ
ε

)
and

∥∥∥∥d�ε

dx

∥∥∥∥
L2(Ωε)

≤ C
√
ε exp

(
−τ
ε

)
, (5.15)

and with the help of Estimate (5.13) we obtain∣∣∣∣
∫

Ωε

rεφ

∣∣∣∣ ≤ C exp
(
−τ
ε

)(
‖φ‖L2(Ωε)

+
∥∥∥∥dφ

dx

∥∥∥∥
L2(Ωε)

)
. (5.16)

The first eigenvalue λε1 being simple, by a Fredholm alternative we can decompose
Ψε into a component proportional to ϕε1 and a component orthogonal to ϕε1. We
write Ψε = βεφ

ε
1 + gε, where βε is a constant, and

‖gε‖L2(Ωε)
+
∥∥∥∥dgε

dx

∥∥∥∥
L2(Ωε)

≤ Cε ‖rε‖H−1(Ωε)
,
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where Cε is the norm of
(
Sε−1 − λε1 Id

)−1
, a bounded operator defined on the

orthogonal of the line generated by ϕε1. We have Cε ≤ C|λε1−λε2| , where C is a constant

independent of ε, and λε2 is the next eigenvalue of Sε. If we obtain that
∣∣λε1 − λε2

∣∣ >
c > 0, with c independent of ε, we then deduce, with the help of Inequality (5.16),

‖gε‖L2(Ωε)
+
∥∥∥∥dgε

dx

∥∥∥∥
L2(Ωε)

≤ C

c
exp

(
−τ
ε

)
. (5.17)

From the decomposition Ψε = βεϕ
ε
1 + gε, we get

|βε|
∥∥ϕε1∥∥L2(Ωε)

− ‖gε‖L2(Ωε)
≤ ‖Ψε‖L2(Ωε)

≤ |βε|
∥∥ϕε1∥∥L2(Ωε)

+ ‖gε‖L2(Ωε)
.

We have
∥∥ϕε1∥∥L2(Ωε)

= 1 and ‖Ψ‖L2(R) = 1, thus∣∣‖Ψε‖L2(Ωε)
− 1

∣∣ = ∣∣‖�ε‖L2(Ωε)
− ‖Ψ‖L2(R\Ωε)

∣∣ ≤ ‖�ε‖L2(Ωε)
+ ‖Ψ‖L2(R\Ωε)

≤ C
1

ε
exp

(
−τ
ε

)
thanks to Estimate (5.15) and the exponential decay of Ψ. As a consequence,
||βε| − 1| ≤ C 1

ε
exp

(− τ
ε

)
and Ψε and ϕε1 being positives, we also have

|βε − 1| ≤ C
1

ε
exp

(
−τ
ε

)
. (5.18)

Finally, if we write ϕε1(x)−Ψ(x) = (1−βε)ϕε1(x)− gε(x)+�ε(x) on Ωε and using
estimates (5.15), (5.17) and (5.18) we obtain∥∥∥∥dϕε1

dx
− dΨ

dx

∥∥∥∥
L2(Ωε)

+ ∥∥ϕε1 − Ψ
∥∥

L2(Ωε)
≤ C

1

ε
exp

(
−τ
ε

)
≤ C exp

(
−τ

′

ε

)
,

and this concludes the proof.
Let us now show that the spectral gap is uniformly bounded, i.e., 0 < c <

λε2 − λε1 < C. We know that λε2 converges to a limit λ2 which either belongs
to σBL ∪ σess(S) or to σdisc(S). In the latter case, the eigenvalues of the discrete
spectrum are isolated so that 0 < c < λ2 − λ1 < C. In the former case, we know
from (5.6) that λ2 ≥ min(µ1, µ2), which is strictly larger than λ1 by assumption,
so that again 0 < c < λ2 − λ1 < C. This yields the desired result for sufficiently
small ε. ��

6. Proofs in the case α < 0 and α(θ0) ≥ 0

In this section we prove Theorems 3.11 and 3.12, following the strategy used in
Section 4 for the case α ≥ 0. According to Proposition 4.2 and Remark 4.3, the
original Problem (1.1) is equivalent to the factorized Problem (4.9) for any value
of the discontinuity constant α. Introducing, as in Lemma 4.5, an operator Sε, the
convergence of (4.9) is governed by the homogenization of Problem (4.10) with
a given right-hand side. The key element for the proof of Proposition 4.6, and in
turn Theorem 3.8, is the a priori estimate given by Proposition 4.4. It does not
hold for α < 0. Nevertheless, the arguments of the proof of Proposition 4.4 yields
a similar result that we state in Proposition 6.1 below:
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Proposition 6.1. The solution uε of Equation (4.10) satisfies

‖uε‖2
H1

0 (Ω)
+ µ1 − µ2

ε2
‖uε‖2

L2(Ω1)
+ α

ε
|uε(0)|2 ≤ C ‖ fε‖L2(Ω) ‖uε‖L2(Ω) , (6.1)

where C is a constant independent of ε.

Since we assumed α < 0, (6.1) alone does not furnish sufficient a priori
estimates for concluding. Thus, for the proof of Theorems 3.11 and 3.12 we need
an additional lemma.

Lemma 6.2. Assume that µ1 > µ2, α < 0 and α(θ0) > 0. Then, the solution uε

of Equation (4.10) satisfies

∥∥∥∥duε

dx

∥∥∥∥
L2(Ω)

≤ C ‖ fε‖L2(Ω) , ‖uε‖L2(Ω1)
≤ Cε ‖ fε‖L2(Ω) ,

and

|uε(0)| ≤ C
√
ε ‖ fε‖L2(Ω) .

Assume that µ1 > µ2, α < 0 and α(θ0) = 0. Then, the solution uε of Equation
(4.10) satisfies

∥∥∥∥duε

dx

∥∥∥∥
L2(Ω2)

≤ C ‖ fε‖L2(Ω) , ‖uε‖L2(Ω1)
≤ C

√
ε ‖ fε‖L2(Ω) ,

and ∥∥∥∥eθ0
x
ε

dvε

dx

∥∥∥∥
L2(Ω1)

≤ C ‖ fε‖L2(Ω) ,

where vε = uεψ1(x, x/ε)/ψ1,θ0(x, x/ε) in Ω1.

Proof of Theorem 3.11. Thanks to the a priori estimate of Lemma 6.2, the case
µ1 > µ2, α < 0 and α(θ0) > 0 is completely similar to the case µ1 > µ2 and
α ≥ 0, which has already been solved in Section 4.

Proof of Theorem 3.12. Let uε be the solution of (4.10) with right-hand side fε
which is a bounded sequence in L2(Ω). We introduce the function

ψθ0(x, y) = χ1(x)ψ1,θ0(y)+ χ2(x)ψ2(y), (6.2)

and define a new factorization (or change of unknown which is licit by virtue of
Proposition 4.1),

vε(x) = uε(x)
ψ
(
x, x

ε

)
ψθ0

(
x, x

ε

) .
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Remark that vε = uε in Ω2, and vε(0) = uε(0) (because of the normalization

condition (2.2)). Testing variationally Equation (4.10) against
ψθ0(x,

x
ε )

ψ(x, x
ε )
φε(x), where

φε is a test function in H1
0 (Ω), we obtain

∫
Ω

D
(

x,
x

ε

) duε

dx

d

dx

(
ψθ0

(
x, x

ε

)
ψ
(
x, x

ε

) φε
)

dx (6.3)

+ µ1 − µ2

ε2

∫
Ω1

B
(

x,
x

ε

)
uε
(
ψθ0

(
x, x

ε

)
ψ
(
x, x

ε

) φε
)

dx + 1

ε
αuε(0)φε(0)

=
∫

Ω

fε

(
ψθ0

(
x, x

ε

)
ψ
(
x, x

ε

) φε
)

dx.

Replacing uε by vε in its left-hand side, Identity (6.3) becomes

∫
Ω1

a1

( x

ε

)
ψ2

1

( x

ε

) d

dx

(
vε
ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

)
)

d

dx

(
φε
ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

)
)

dx (6.4)

+
∫

Ω2

D
(

x,
x

ε

) dvε

dx

dφε

dx
dx

+ µ1 − µ2

ε2

∫
Ω1

σ1

( x

ε

)
ψ2

1,θ0

( x

ε

)
vεφε dx

+ 1

ε
αvε(0)uε(0)

=
∫

Ω

ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

) fεφ
ε dx.

Note that

∫
Ω1

a1

( x

ε

)
ψ2

1

( x

ε

) d

dx

(
vε
ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

)
)

d

dx

(
φε
ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

)
)

dx

=
∫

Ω1

a1

( x

ε

)
ψ2

1,θ0

( x

ε

) dvε

dx

dφε

dx
dx

+
∫

Ω1

a1

( x

ε

) d

dx

(
ψ1,θ0

( x

ε

)) d

dx

(
vεφεψ1,θ0

( x

ε

))

−
∫

Ω1

a1

( x

ε

) d

dx

(
ψ1

( x

ε

)) d

dx

((
ψ1,θ0

(
x
ε

))2

ψ1
(

x
ε

) vεφε

)
,

and, by integration by parts and Definition (2.1) of ψ1,θ , we have
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∫
Ω1

a1

( x

ε

) d

dx

(
ψ1,θ0

( x

ε

)) d

dx

(
vεφεψ1,θ0

( x

ε

))

−
∫

Ω1

a1

( x

ε

) d

dx

(
ψ1

( x

ε

)) d

dx

(
ψ2

1,θ0

(
x
ε

)
ψ1
(

x
ε

) vεφε
)

= 1

ε
(α(θ0)− α) vε(0)φε(0)+ µ2 − µ1

ε2

∫
Ω1

σ1

( x

ε

)
ψ2

1,θ0

( x

ε

)
vεφε.

As a consequence, Identity (6.4) becomes∫
Ω1

a1

( x

ε

)
ψ2

1,θ0

( x

ε

) dvε

dx

dφε

dx
dx +

∫
Ω2

D
(

x,
x

ε

) dvε

dx

dφε

dx
dx (6.5)

+1

ε
α(θ0)v

ε(0)φε(0) =
∫

Ω

ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

) fεφ
ε dx.

Since α(θ0) = 0, we have∫
Ω1

a1

( x

ε

)
ψ2

1,θ0

( x

ε

) dvε

dx

dφε

dx
dx +

∫
Ω2

D
(

x,
x

ε

) dvε

dx

dφε

dx
dx

=
∫

Ω

ψ1,θ0

(
x
ε

)
ψ1
(

x
ε

) fεφ
ε dx.

Note that for any bounded sequence φε in W1,∞(Ω),∣∣∣∣
∫

Ω1

a1

( x

ε

)
ψ2

1,θ0

( x

ε

) dvε

dx

dφε

dx
dx

∣∣∣∣ ≤ C

∥∥∥∥eθ0
x
ε

dvε

dx

∥∥∥∥
L2(Ω1)

∥∥∥eθ0
x
ε

∥∥∥
L2(Ω1)

→ 0,

since ‖eθ0
x
ε

dvε

dx ‖L2(Ω1)
is bounded, thanks to Lemma 6.2. Of course

∫
Ω1

ψ1,θ0(
x
ε )

ψ1( x
ε )

fεφε

goes to 0 exponentially fast. For such bounded φε, (6.3) therefore, is written as∫
Ω2

D
(

x,
x

ε

) duε

dx

dφε

dx
dx =

∫
Ω2

fεφ
ε dx + o(1). (6.6)

Since the test functions in the two-scale convergence method are of the type
φε(x) = φ0(x) + εφ1(x, x/ε) with smooth functions φ0, φ1, they are uniformly
bounded in W1,∞(Ω) and one can use (6.6) to pass to the limit. Classical arguments
of homogenization allow us to conclude the proof. ��
Proof of Lemma 6.2. With the choice φε = vε in (6.5) we obtain

∫
Ω1

a1

( x

ε

)
ψ2

1,θ0

( x

ε

)(dvε

dx

)2

dx +
∫

Ω2

D
(

x,
x

ε

)(dvε

dx

)2

dx (6.7)

+ 1

ε
α(θ0) (v

ε)
2
(0)

=
∫

Ω

fεu
ε dx.
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If α(θ0) > 0, this implies that

|vε(0)|2 ≤ Cε ‖ fε‖L2(Ω) ‖uε‖L2(Ω) . (6.8)

Because uε(0) = vε(0), plugging (6.8) in (6.1) yields the desired results.
If α(θ0) = 0, Identity (6.7) only implies that∥∥∥∥eθ0

x
ε

dvε

dx

∥∥∥∥
2

L2(Ω1)

≤ C ‖ fε‖L2(Ω) ‖uε‖L2(Ω) , (6.9)

and ∥∥∥∥duε

dx

∥∥∥∥
2

L2(Ω2)

≤ C ‖ fε‖L2(Ω) ‖uε‖L2(Ω) .

We will next show that

‖uε‖2
L2(Ω)

≤ C
(
ε ‖ fε‖2

L2(Ω)
+ ‖uε‖2

L2(Ω2)

)
(6.10)

and, together with (6.9) and Poincaré inequality in Ω2, this yields the desired
results.

Note that

uε(0)2 ≤ |Ω2|2
∫

Ω2

(
duε

dx

)2

≤ C ‖ fε‖L2(Ω) ‖uε‖L2(Ω) .

Using this inequality in (6.1) gives

‖uε‖2
L2(Ω1)

≤ Cε ‖ fε‖L2(Ω) ‖uε‖L2(Ω) ≤ Cε
(
‖ fε‖2

L2(Ω)
+ ‖uε‖2

L2(Ω)

)
which in turn implies (6.10). ��

7. Proof of Proposition 2.2

7.1. The case of C2 coefficients

The first step is similar to the proof of Lemma 2.1, namely we transform (2.1) into
(2.4). If we assume that the coefficients ai,Σi and σi are C2 periodic functions
on [0, 1], then the first eigenfunction ψi,0 is actually differentiable two times, and
thus the coefficients b and s of (2.4) are also of class C2. Proposition 2.2 is then
a consequence of Lemma 7.1.

Lemma 7.1. Let b and s be periodic positive functions on [0, 1] such that their
second derivative b

′′
and s

′′
exist and are piecewise continuous. Denote by M >

m > 0 two positive constants which are the upper and lower bounds of b and s.
For each θ ∈ R the first eigenvector uθ of Problem (2.4) with the normalization
uθ(0) = 1 satisfies

−C1 − C2√−µ(θ) + C3

√−µ(θ) ≤ θ

|θ|u
′
θ(0) ≤ C3

√−µ(θ)+ C1 + C2√−µ(θ),
(7.1)

where the positive constants C1,C2 and C3 depend only on b and s.
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Proof. The assumed smoothness of b and s enables us to perform a Liouville
transformation of Problem (2.4). Introducing

t = 1

γ

∫ x

0

(
s(z)

b(z)

) 1
2

dz γ =
∫ 1

0

(
s(z)

b(z)

) 1
2

dz, and fθ (t) = (s(x)b(x))
1
4 uθ(x),

(7.2)

the transformed equation is, see [14],


d2 fθ
dt2

(t)+ (γ 2µ(θ)+ Q(t)) fθ = 0 in [0, 1],

t → fθ (t)e−θt 1-periodic,

(7.3)

with

Q(t) = γ 2b
1
4 (x)s− 3

4 (x)
d

dx

(
b(x)

d

dx
(b(x)s(x))−

1
4

)
.

We can assume without loss of generality that γ = 1. The boundary conditions
are preserved since this change of variable preserves periodicity. We shall use the
fact that Q is a bounded 1-periodic function. It is sufficient to prove (7.1) for
θ > 0, since in the other case the function gθ(t) = fθ(−t) is solution of (7.3), with
θ > 0, if Q is replaced by Q(−t), which is also a bounded 1-periodic function. By
adding a constant to Q (and subtracting it from µ(θ)), we can always assume that
−M < Q(t) < −1. On the other hand, thanks to Lemma 2.3, for sufficiently large
θ we can also assume that µ(θ) translated by the above constant is negative.

Next, we introduce g1 and g2 as the two fundamental solutions of the Cauchy

problem for the ordinary differential equation d2g
dt2 +(µ(θ)+ Q(t))g = 0, satisfying

g1(0) = 1, g′
1(0) = 0, andg2(0) = 0, g′

2(0) = 1.

It is a classical result of Floquet theory that X1 = eθ and X2 = e−θ are the roots of
the characteristic equation

X2 − (
g1(1)+ g′

2(1)
)

X + 1 = 0.

By linearity, we can write fθ (t) = fθ(0)g1(t) + f ′
θ(0)g2(t). Since θ > 0, eθ =

∆ + (
∆2 − 1

) 1
2 where 2∆ = (

g1(1)+ g′
2(1)

)
. Consequently, ∆ > 1 and

g1(1)+ g′
2(1) = 2∆ > eθ

and

eθ > 2∆ − 1

∆
> 2∆ − 2e−θ = g1(1)+ g′

2(1)− 2e−θ . (7.4)

From the relation fθ(1) = eθ fθ (0) we deduce that
f ′
θ
(0)

fθ (0)
g2(1) = eθ − g1(1). Using

Relation (7.4) we have obtained
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g′
2(1) >

f ′
θ (0)

fθ (0)
g2(1) > g′

2(1)− 2e−θ. (7.5)

Following Picard’s iteration method (see e.g. [19]), we recursively define a se-
quence (vn(t))n∈N by

v0(t) = 1

ω
sinh(ωt)

and

vn(t) = − 1

ω

∫ t

0
sinh (ω(t − ξ)) Q(ξ)vn−1(ξ)dξ for all n ≥ 1.

For ω = √−µ(θ), we find that g2(x) = ∑+∞
n=0 vn(x). Since − sinh (ω(t − ξ)) Q(ξ)

> 0 for all 0 < ξ < t, and v0(t) > 0 for all t > 0, by induction, we can conclude
that Wn(x) ≥ vn(x) ≥ wn(x), for all n ≥ 0 and x ≥ 0, where Wn and wn are two
other sequences defined by W0 = v0 = w0, and

Wn = M

ω

∫ t

0
sinh (ω(t − ξ))Wn−1(ξ)dξ,

wn = 1

ω

∫ t

0
sinh (ω(t − ξ))wn−1(ξ)dξ for n ≥ 1.

Note that W(t) = ∑+∞
0 Wn(t) (w(t) = ∑+∞

0 wn(t), respectively) is a solution of

d2W

dt2
+ (µ− M)W = 0

(
d2w

dt2
+ (µ− 1) w = 0, respectively

)
,

and therefore is given by W(t) = sinh
(
t
√

M − µ
)

(w(t) = sinh
(
t
√

1 − µ
)
, re-

spectively) and consequently

sinh
(√

M − µ
)

= W(1) ≥ g2(1) ≥ w(1) = sinh
(√

1 − µ
)
. (7.6)

Similarly W ′
n(t) ≥ v′

n(t) ≥ w′
n(t), and

√
M − µ cosh

(√
M − µ

)
=W ′(1) ≥ g′

2(1) ≥ w′(1) = √
1 − µ cosh

(√
1 − µ

)
.

(7.7)

Using Inequalities (7.6) and (7.7) in (7.5) yields,

Ce
M−1

2
√−µ

√
M − µ ≥ f ′

θ (0)

fθ (0)
≥ c

√
1 − µe

− M−1
2
√−µ − 2e−θ .

Using the change of variables (7.2), and using the result of Lemma 2.3 to bound
e−θ in terms of µ(θ) this inequality concludes the proof. ��
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7.2. The case of piecewise constant coefficients

As in the previous subsection, it is sufficient to consider System (2.4), which is
equivalent to (2.1), and to study the case θ going to +∞. As in Lemma 2.3, we
rewrite (2.4) as a first-order system

{
Y ′(x) = A(x)Y(x)
Y(1) = eθY(0)

, A =
[

0 b−1

−µ(θ)s 0

]
, and Y =

(
Y1 = uθ

Y2 = bu′
θ

)
.

Here we assume that the coefficients b, s are piecewise constant functions. More
precisely, there exists a number N, a family of points (xi)0≤i≤N satisfying x0 =
0 < xi−1 < xi < xi+1 < xN = 1 for 2 ≤ i ≤ N − 2, and positive values (bi)1≤i≤N

and (si)1≤i≤N such that

b(x) = bi and s(x) = si for x ∈ (xi−1, xi), 1 ≤ i ≤ N.

The goal is to prove that Y2(0) grows linearly as θ goes to +∞, which in turn
proves Proposition 2.2, since

dψi,θ

dx
(0) = b−1(0)Y2(0)+ dψi,0

dx
(0).

By Lemma 2.3 we already know that µ(θ) < 0 for θ �= 0 and has quadratic growth
at infinity. A straightforward computation yields, for any x ∈ (xi−1, xi),

Y(x) = Mi(θ, x)Y(xi−1), (7.8)

Mi (θ, x) =

 coshϕi(x)

1√
−µ(θ)bi si

sinhϕi(x)

√−µ(θ)bisi sinhϕi(x) coshϕi(x)


 ,

with ϕi(x) =
√

−µ(θ)si
bi

(x − xi−1). Thus

Y(1) = M(θ)Y(0) = eθY(0),withM(θ) =
N∏

i=1

Mi(θ, xi).

Each matrix Mi(θ, x) has its determinant equal to 1, as well as M(θ). Thus the
two eigenvalues of M(θ) are eθ and e−θ . Let us compare these exact eigenvalues
with those of the leading order term of M(θ) as θ goes to +∞. Introducing
D(θ) = diag

(√−µ(θ), 1
)
, we have

Mi(θ, xi) = eϕi (xi )D(θ)−1 M0
i D(θ)

(
1 + O

(
e−αθ)) ,

with M0
i = 1

2


 1 1√

bi si

√
bisi 1


 ,
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andα = min1≤i≤N

(
2 (xi − xi−1)

√
si m
bi M

)
> 0. Therefore, noticing that

∑N
i=1 ϕi(xi)

= C
√−µ(θ), where C > 0 does not depend on θ , we obtain

M(θ) = eC
√−µ(θ)D(θ)−1 M0 D(θ)

(
1 + O

(
e−αθ)) ,with M0 =

N∏
i=1

M0
i .

Up to a small remainder, the eigenvalues of M(θ) are thus equal to those of M0

times the multiplicative factor exp (C
√−µ(θ)). Since M0 does not depend on θ ,

this proves that µ(θ) = −cθ2 + o(1) for some positive constant c > 0. On the
other hand, the eigenvectors of M(θ) are equal to D(θ)−1 times those of M0 (up
to a small remainder). Choosing the normalization Y1(0) = 1, this yields that
Y2(0) = c′θ + o(1) for some constant c′, which is positive as already remarked in
the proof of Lemma 2.3.

Note added in proof. After submission of this paper for publication, we found an
alternative proof of Lemma 5.4, which does not rely on Proposition 2.2. This
enables us to prove Theorem 3.5 and Theorem 3.10 assuming only that the peri-
odic coefficients are positive, bounded, measurable functions. This proof will be
presented in a future work in collaboration with A. Piatnitski.

References

1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6),
1482–1518 (1992)

2. Allaire, G., Bal, G.: Homogenization of the criticality spectral equation in neutron
transport. M2AN 33, 721–746 (1999)

3. Allaire, G., Capdeboscq, Y.: Homogenization of a spectral problem in neutronic multi-
group diffusion. Comput. Methods Appl. Mech. Engrg. 187, 91–117 (2000)

4. Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis.
J. Math. Pures et Appli. 77, 153–208 (1998)

5. Allaire, G., Malige, F.: Analyse asymptotique spectrale d’un problème de diffusion
neutronique. C. R. Acad. Sci. Paris Série I t.324, 939–944 (1997)

6. Allaire, G., Piatnitski, A.: Uniform spectral asymptotics for singularly perturbed locally
periodic operators. Commun. Partial Differential Equations 27, 705–725 (2002)

7. Anselone, P.: Collectively Compact Operator Approximation Theory and Applications
to Integral Equations. Englewood Cliffs, N.J.: Prentice-Hall 1971

8. Capdeboscq, Y.: Homogenization of a diffusion equation with drift. C. R. Acad. Sci.
Paris Série I t.327, 807–812 (1998)
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