
NUMERICAL SIMULATION OF 2-D TWO-PHASE FLOWSWITH INTERFACE
S. KOKHDRN/DMT/SERMA,CEA Salay, 91191 Gif-sur-Yvette, Frane.ANDG. ALLAIRELaboratoire d'Analyse Num�erique,Universit�e Paris-VI, 75252 Paris Cedex 5, Frane.AbstratThis paper is devoted to the diret numerial simulation of ompressibletwo-phase ows, i.e. inluding material interfaes, in an Eulerian frame-work. Eulerian methods, suh as Volume Of Fluid, are easy to handle butsu�er from numerial di�usion whih spreads out the preise loalizationof the interfae. We disuss some remedies to this loss of auray.1. IntrodutionModelization and simulation of biuid and diphasi ows have beome ofinreasing interest among the omputational uid dynami ommunity. So-alled diret simulation, on the ontrary of average models, involves thedesription of the interfae between uids whih is a disontinuity surfaefor the material properties. We propose a model for ompressible two-phaseows. The dynamial aspet of the problem is handled by the ompressibleEuler equations, written for the overall mixture, while the phase interfaeis aptured on an Eulerian mesh. An extra equation is therefore added tothe Euler system in order to advet values of a olor funtion  aordingto the uids motion. This type of systems has been studied by Abgrall(Abgrall R, 1988) and Karni (Karni S, 1996). This approah provides keyfeatures suh as no extra omplexity in dealing with \high-dimensional"problems, easy handling of drasti topologial hanges or omplex topol-



2 S. KOKH AND G. ALLAIREogy of the interfae between the two phases. The other side of the oin isa lak of auray for the interfae desription in ontrast to methods in-volving interfae reonstrution suh as Front Traking. In fat, numerialdi�usion tends to thiken the interfae into a transition zone whih is nolonger a sharp disontinuity between the media. We fous on the numeri-al di�usion problem near ontat disontinuities. Simple observations for asingle transport equation lead us to propose various proesses for improvingthe auray of the interfae desription while preserving the ease-of-use ofinterfae apturing methods.2. Biuid solver: model and numerial treatmentThe model used here follows the line of Abgrall in (Abgrall R, 1988). Themotion of the uids is here driven by the ompressible Euler equations(1){(3). It is supplied by the olor funtion transport equation (4) and anequation of state (EOS) that loses the system. For the sake of simpliitywe expose the method in the ase of a perfet gas EOS, despite the proessis still valid for more general laws suh as Sti�ened Gas. Numerial di�u-sion implies that some ells do ontain both speies. Upon an isothermalassumption, Abgrall showed how to onstrut an EOS of the form (5) inorder to deal with the mixture zone and whih redues to the usual perfetgas EOS in pure uid areas. �t�+ div(�~u) = 0; (1)�t�~u+ div(�~u
 ~u) +��!gradp = ~F ; (2)�t�e+ divh(�e + p)~ui = Q; (3)�t + ~u � ��!grad = 0; (4)p = p(�1; �2; �(e� j~uj2=2)): (5)~F = (Fx; Fy) and Q are soure terms suh as gravity, visosity, surfaetension, and thermal di�usion.We briey desribe the numerial method used to implement the model.The Euler system is solved thanks to a Roe-type sheme (Roe P L, 1981),as done in (Abgrall R, 1988) for the variables (�; �~u; �e). As mentioned byKarni in (Karni S, 1994), onservative shemes have diÆulties to desribeaurately the pressure near the interfae generating spurious osillations.To remedy this drawbak, Abgrall proposes in (Abgrall R, 1988) to judi-iously hoose  = 1=� (� being the Gr�unsein onstant) as olor funtionand derives a disretization of (4) that preserves numerial ontat disonti-nuities. Gravity is treated as a entered soure term, visosity and thermaldi�usion are disretized by standard �nite di�erenes while we use the on-tinuous surfae tension model of (Brakbill J, Kothe D and Zemah C,



TWO-PHASE FLOWS WITH INTERFACE 31992) for the interfaial tension. Seond order auray in spae is reahedthanks to a MUSCL method with a minmod limiter. As for seond order intime, we use a two-point Runge-Kutta method. Unfortunately even seondorder auray in spae and time annot help to derease numerial di�u-sion for long. Indeed even if the numerial sheme sueeds in pituring thebehaviour of the system, it may happen that an entire uid omponent justdisappears into the mixture zone. Let us emphasize that mixture zones donot have neessarily any real physial sense. Furthermore it may also be-ome very diÆult to desribe jumps of variables aross the interfae whihare of high interest for modeling physial proess suh as mass transfer dueto phase hanges. In the sequel we propose various methods to maintainthe sharpness of ontat disontinuities (material interfaes).3. The transport equation modelWe fous in this setion on the spei� problem of numerial di�usion of�nite di�erene shemes near ontat disontinuities. To begin with, letus underline that the struture whih drives the ontat disontinuity isa linearly degenerated �eld. Harten in (Harten A, 1978) enlightens thebehavior of a disontinuity line adveted by suh �eld and approximatedby a lassial numerial sheme. The width of the numerial di�usion willinexorably grows as the number of time steps inreases, on the ontrary toshoks driven by genuinely non-linear �elds whih are enlosed in a visouspro�le. The most simple equation that an mimi the ritial behavior ofsuh �elds is a simple linear transport equation at onstant speed. Letu(t; x) be the solution of�tu+ �xu = 0; 8x 2 IR; 8t > 0 (6)with the initial ondition u(0; x) = u0(x),  being a onstant veloity. Theexat solution is u(t; x) = u0(x�t). We are interested in the ase where u0is a step funtion, and study the numerial di�usion assoiated to a givennumerial sheme. We �rst reall the inuene of order auray upon nu-merial di�usion. All omputations are done with an upwind sheme for = 1 on a segment I = [0; 1℄, meshed by 1000 regular ells, with periodiboundary onditions and u0 = 1l[1=4;3=4℄. Seond order in spae and time arerespetively implemented via a MUSCL method with minmod limiter anda two-points Runge-Kutta method. As expeted, for the �rst order shemethe L1-norm of the error grows like pn, where n is the number of timesteps. When swithing to seond order in spae, the error L1-norm stopsinreasing after a few time steps. However, for both time and spae seondorder, the numerial di�usion of the sheme grows again unbounded. Thus,seond order in spae with �rst order in time would be quite satisfatory,



4 S. KOKH AND G. ALLAIREbut in many ases seond order in time is neessary to stabilize numer-ial osillations. For example, the simple omputation of the hydrostatipressure establishment upon the inuene of gravity in a single uid turnsout to be impossible due to instabilities. Suh simple examples motivate ourstudy of proedures to bound this extra di�usion. The level set method pro-vides a way to exatly ontrol the thikness of the interfae. It uses insteadof the disontinuous olor funtion a ontinuous funtion initialized as thesigned distane to the interfae as exposed in (Sethian J, 1996) or (MulderS, Osher S and Sethian J, 1992). This funtion is frequently reinitializedduring the omputation by solving a suitable Hamilton-Jaobi equation asmentioned in (Sethian J, 1996) and (Sussman M, Smereka P and Osher S,1994). Here, staying in the framework of the VOF method, we propose toadd soure terms in order to straighten up the front.4. Sharpening soure termsTo begin with, we introdue in (6) a soure term P (u) = �u(1�u)(u�1=2)where � is a real parameter. This soure term does not modify the exatsolution of this equation sine it an only take the values 0 or 1. However,in the disrete problem it will at as a \repelling fore" on the approximatesolution. Values above 1=2 will be pushed towards 1, while those belowwill get loser to 0. Two numerial implementations of this soure term arepossible. First of all, it an simply be added into the disretized equationas a entered soure term. Alternatively, a splitting-like method an behosen: the lassial upwind sheme resolution is stopped after N time stepsthen the approximated solution uN at instant N is sharpened by solving�sv = P (v) with initial ondition v(0; x) = uN until it reahes a steady state(s is an arti�ial time variable). Fortunately, there exists expliit solutionsof this ODE, thus no new extra omputational work is required. A seondtype of soure term an be obtained by hanging the onstant � into avariable quantity ��xu, whih yields Q(u; �xu) = �u(1�u)(u�1=2)�xu. Inthis ase, equation (6) an also be rewritten�tu+ �x[u+ (�=4)u2(1� u)2℄ = 0Atually, this appears to be a ux modi�ation of (6) whih �ts into theframework of the arti�ial ompression method developed by Harten in(Harten A, 1978). Figure 1 displays a omparison of the growth for the L1-error between the di�erent methods. Auray gain is obvious for the �rstorder method as the L1-error stops growing after a few time steps. Whilefor seond order in spae only the proess doesn't show real improvement,it sueeds in slowing down the error growth seond order is applied to bothspae and time. The eÆieny of suh sharpening proess an be quanti�ed



TWO-PHASE FLOWS WITH INTERFACE 5by studying the equivalent equation of the numerial sheme. Indeed, forthe ase of an upwind �rst order sheme, a visosity pro�le (having theshape of a tanh funtion) an be expliitly omputed for the initial valueproblem (6).5. Appliation to the biuid modelThe sharpening proess desribed earlier is applied to the advetion equa-tion for  = 1=� in system (1){(5) introduing the soure termQ( ) = ��( �  1)( �  2)( � ( 1 +  2)=2)in the sheme as a entered soure term. Figure 2 shows the e�et of sharp-ening (� = 0:2) on the omputing of a shok into an helium bubble sur-rounded by air (Abgrall R, 1996) on a 1m�1m mesh disretized in 100�100regular ells. Notie that the other variables seem to be una�eted by thesharpening soure term.
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Figure 1. L1-error for an impulse advetion after 2000 time steps, (a): order one,(b):order 2 sheme in both time and spae, () order 2 sheme in both time andspae with entered soure term orretion for � = 5� 10�3, (d): order one withentered soure term orretion for � = 0:1.6. Conlusion and perspetivesWe have developed a simple method for sharpening the advetion of dison-tinuities in �nite di�erenes numerial shemes. This method is easy to useand adds no extra omplexity when dealing with 2-D and 3-D problems. Theprimary goal is to improve the loalization of material interfaes in om-pressible two-phase ow simulation. Important variables, suh as pressure,
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Figure 2. pro�le for �, without sharpening on the left, with sharpening on theright, at instant t = 0:35sdensity and veloity, do not seem to be notieably a�eted by this sharp-ening. We hope to be able to derive new further estimates for seond ordershemes in both time and spae. Conerning appliations to two-phase owswith phase hange at the interfae, we have obtained preliminary results byadding a kineti relation to determine the interfae veloity as desribed in(Truskinowsky L, 1991). Alternate advetion shemes for the olor funtionsuh as level set and harateristi methods have been implemented, whilethe extension of the model to sti�ened gas is in progress. This will be thetopi of future reports.ReferenesAbgrall R (1996). How to prevent pressure osillations in multiomponent ow alula-tions: a quasi onservative approah. J. Comp. Phys., 125, pp 150{160.Abgrall R (1988). G�en�eralisation du sh�ema de Roe pour le alul d'�eoulements dem�elanges de gaz �a onentrations variables. La Reherhe A�erospatiale, 6, pp 31{43.Brakbill J, Kothe D and Zemah C (1992). A ontinuum method for modelling surfaetension. J. Comp. Phys., 100, pp 335{354.Godlewski E and Raviart P A (1996). Numerial Approximation of Hyperboli Systemsof Conservation Laws Springer, Applied Mathematial Sienes, vol. 118.Harten A (1978). The Arti�ial Compression Method for Computation os Shoks andContat Disontinuities: III-Self-Adjusting Hybrid Shemes. Math. Comp., 142, pp363{389.Karni S (1996). Hybrid multiuid algorithms. SIAM J. Si. Comput., 5, pp 1019{1039.Karni S (1994). Multiomponent ow alulations by a onsistent primitive algorithm.J. Comp. Phys., 112, pp 31{43.Mulder S, Osher S and Sethian J (1992). Computing interfae motion in ompressiblegas dynamis. J. Comp. Phys., 100, pp 209{228.Roe P L (1981). Approximate Riemann solvers, parameter vetors, and di�ereneshemes. J. Comp. Phys., 43, pp 357{372.Sethian J (1996). The level set method. Cambridge University Press.Sussman M, Smereka P and Osher S (1994). A level set method for omputing solutionsto inompressible two-phase ows. J. Comp. Phys., 114, pp 146{159.Truskinowsky L (1991). Kinks versus shoks. in Shok indued transitions and phasestruture in general media, Fosdik R et al. eds., Springer Verlag, Berlin.


