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Abstract

We address the homogenization of an eigenvalue problem for the neutron transport

equation in a periodic heterogeneous domain, modeling the criticality study of nuclear

reactor cores. We prove that the neutron flux, corresponding to the first and unique

positive eigenvector, can be factorized in the product of two terms, up to a remainder

which goes strongly to zero with the period. One term is the first eigenvector of the

transport equation in the periodicity cell. The other term is the first eigenvector of a

diffusion equation in the homogenized domain. Furthermore, the corresponding eigen-

value gives a second order corrector for the eigenvalue of the heterogeneous transport

problem. This result justifies and improves the engineering procedure used in practice

for nuclear reactor cores computations.

1 Introduction

The power distribution in a nuclear reactor core is usually determined by solving a transport
equation for the neutron flux. In many practical situations in reactor analysis, only a steady-
state solution is required, and the time variable is eliminated. The steady equation is of
a non-standard type since the source term is itself a function of the solution (neutrons are
produced by fission which itself is triggered by other neutrons in a chain reaction). This time-
independent transport equation is a linear eigenvalue problem which is called the criticality
problem for the neutron transport equation. It expresses the balance between the production
of neutrons by fission and its absorption or scattering in the reactor core and leakage at the
boundary. The unknowns are not only the neutron flux φ(x, v), which is the neutron density
at point x with velocity v, but also the positive ratio keff (the so-called multiplication factor)
which measures the balance between the production and removal of neutrons. More precisely,
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†Électricité de France DER/IMA/MMN, 92141 Clamart, France and LAN, Université Paris-VI, 75252
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(φ(x, v), keff ) is a couple of eigenvector and eigenvalue for a transport equation. Since only
positive densities have a physical meaning, the only relevant solution turns out to be the first
positive eigenvector (positive and unique up to a multiplicative constant). Therefore, φ(x, v)
is the first eigenvector and 1/keff is the smallest eigenvalue satisfying the following equation

v · ∇φ+ Σ(x, v)φ =

∫

V

f(x, v′, v)φ(x, v′)dv′ +
1

keff

∫

V

σ(x, v′, v)φ(x, v′)dv′ (1)

with appropriate boundary conditions in a convex bounded open set Ω ⊂ IRN and with a
compact velocity space V ⊂ IRN . The coefficients in (1) are called cross sections: Σ is the
total (or absorbing) cross section, f is the scattering cross section, and σ is the fission cross
section.

The interpretation of the multiplication factor keff is as follows (for details, see e.g.
[12, 15, 27]): if it is equal to 1, there is a perfect balance between production and removal of
neutrons and the reactor is said to be critical ; if it is larger than 1, then too many neutrons
are produced and the reactor is super-critical (it can operate only if absorbing control rods
are introduced in the core); if it is smaller than 1, then not enough neutrons are produced
and the reactor is sub-critical (the fission chain reaction dies out). On the other hand the
solution φ(x, v) of (1) indicates the relative power distribution in the core. Remark that,
since it is an eigenvector, φ(x, v) is defined up to a multiplicative constant, and therefore the
total power in the core is not given by the criticality problem (1).

Solving numerically the eigenvalue problem (1) in a whole nuclear core is still a challenge
with modern computers, even in two space dimensions. One striking reason is that nuclear
cores, defined through the cross section Σ, f and σ, are highly heterogeneous, asking for a very
fine mesh. However, the periodic structure of many usual cores allows for first homogenizing
the transport equation, and then solving numerically the homogenized problem. In practice
the homogenized problem is a diffusion equation with slowly varying coefficient, which is
much easier to solve numerically. This homogenization problem has been widely addressed
in the past forty years in physics (see e.g. [10, 12, 15]) as well as in mathematics (see e.g.
[11, 20, 21, 27, 29]). In the physical and mathematical literature the methodology is always
the same: the neutron flux φ(x, v), solution of (1), is factorized as the product of two terms

φ(x, v) = ψ(x, v)u(x),

where ψ(x, v) is the solution of the so-called infinite medium transport equation, and u(x) is
the solution of an homogenized diffusion equation. The infinite medium transport equation
is the same criticality spectral equation than (1), but posed in a single periodicity cell with
periodic boundary conditions. On the other hand, the homogenized diffusion equation is also
a spectral problem posed in the whole core (much simpler than (1) since it does not involve
a velocity variable). The macroscopic diffusion flux u(x) gives the rough shape of the true
flux φ(x, v), while the microscopic transport flux ψ(x, v) corresponds to the local oscillations
of the true flux. This factorization procedure is at the basis of most numerical computations
of reactor cores. Of course, a crucial problem for engineers is to know how to compute the
homogenized coefficients for the diffusion equation (there are many available formulas, see
for example the so-called Benoist formula in Remark 3.3).
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In this paper we rigorously justify this factorization principle for a periodic domain. We
also furnish formulas for the homogenized diffusion coefficients and an asymptotic expansion
for the criticality eigenvalue 1/keff (see Theorem 3.1). Our homogenization formulas dif-
fer from those in the physical literature, but coincide with those found by Larsen [20, 21].
There are two main differences between the works of Larsen and ours. First, Larsen studied a
time-dependent transport equation instead of the spectral problem (1) with an assumption of
local criticality on the cross-sections. Second, following his previous work with Keller [22], he
uses formal two-scale asymptotic expansions to derive a homogenized limit, without rigorous
convergence theorem. Of course, the geometrical assumption of periodicity is hardly satisfied
by modern reactors. However, it is up to now essentially the only case where homogenization
can be rigorously justified either physically or mathematically. The treatment of heteroge-
neous cores with different types of assemblies (i.e. with a slowly varying periodicity cell) is
the subject of active current research. The factorization priciple is not so clear in this case
(see Remark 3.5) and boundary layers may appear between different cells. However, under
further assumptions, we expect that a suitable generalization of our approach will succeed
also for a piecewise periodic core.

We now discuss our scaling assumptions for homogenizing the spectral transport equation
(1). As usual, the unit periodicity cell is denoted by Y = (0, 1)N . The reactor core is a
bounded domain Ω. Assuming that Ω is periodic, we denote by ε > 0 the periodicity of the
heterogeneities in Ω. Since the size of the domain is independent of ε, Ω is composed of the
order of ε−N periodicity cells of the type εY = (0, ε)N . Homogenization is an asymptotic
analysis as the small parameter ε goes to 0, or equivalently as the number of cells grows up
to infinity. Since ε is the size of the periodicity cell and the physical unit of cross sections is
the inverse of a length, one must carefully scale the cross sections in terms of ε. The mean
free path of the neutrons is physically independent of the number of unit cells in the core;
therefore it must remain of the same size as the unit cell. Accordingly, in order to perform
a consistent asymptotic analysis we have to scale all cross sections to be of the order of
1/ε. Therefore, introducing λε = 1

keff
, equation (1) is replaced by the following sequence of

criticality problems







εv · ∇φε + Σε(x, v)φε =

∫

V

fε(x, v′, v)φε(x, v
′)dv′ + λε

∫

V

σε(x, v′, v)φε(x, v
′)dv′ in Ω × V

φε = 0 on Γ− = {(x, v) ∈ ∂Ω × V | v · n(x) < 0},
(2)

where the cross sections are periodic functions given by

Σε(x, v) = Σ(
x

ε
, v), fε(x, v′, v) = f(

x

ε
, v′, v), σε(x, v′, v) = σ(

x

ε
, v′, v),

with Σ, f and σ positive Y -periodic functions of the space variable, and independent of ε (see
section 2 for more detailed assumptions). The absorbing boundary condition in (2) expresses
that no particles enter the core. This statement is physically valid as a first approximation.
It can be shown (at least formally) that the addition of a dissipative reflector around the
core merely modifies the neutron density by an amount of the order of ε.
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The paper is organized as follows. In the next section basic mathematical properties
of problem (2) are recalled, concerning the existence and regularity of its solutions when
ε is fixed. It also encompasses the criticality eigenvalue problem with periodic boundary
conditions. Section 3 is devoted to a detailed presentation of our main results concerning the
homogenization of (2). It includes the factorization of the neutron flux and a second order
asymptotic expansion for the associated eigenvalue. The proofs of these results are given in
sections 4 and 5. More precisely, section 4 focuses on a priori estimates for a source problem
associated with (2), while section 5 is concerned with the proof of the homogenization process,
using the two-scale convergence method. Finally, section 6 contains some corrector results
and numerical computations for assessing our homogenization theorem. Our results have
been announced in [3]. Similar homogenization theorems have been proved for the criticality
spectral problem when using a diffusion model instead of our transport equation [4, 5, 24]. In
different contexts, various homogenization results have been obtained for transport equations
(see e.g. [1, 16, 17, 19]).

2 Existence and regularity results for eigenvalue prob-

lems in transport

The goal of this section is to establish some results concerning the existence and the regularity
of eigenvalues and eigenvectors for our model of neutron transport. Although the following
theorems are mostly variations of previously known results, to the best of our knowledge
they have not appeared elsewhere. Since they are the starting point of our analysis in the
next sections, we include them in this paper for the sake of completeness. Most of the proofs
below are merely sketched and we refer to the thesis of the second author [7] for complete
details. The reader who is willing to accept such results can safely skip this section in a first
pass.

We first give the detailed assumptions on the phase space and the coefficients of the
transport equation that are used throughout this paper.

(H1) The domain Ω is a convex bounded open set.

(H2) The velocity space V is a compact subset of IRN which does not contain 0. Furthermore
V is assumed to be the closure of an open set, and its N -dimensional measure is
normalized to have |V | = 1.

(H3) The cross-sections Σ(y, v), f(y, v′, v), σ(y, v′, v) are measurable positive bounded func-
tions of their arguments and there exists a positive constant C > 0 such that, for a.e.
(y, v, v′),

σ(y, v′, v) ≥ C

Σ(y, v) −
∫

V

f(y, v′, v)dv′ ≥ C

Σ(y, v) −
∫

V

f(y, v, v′)dv′ ≥ C.

(3)
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(H4) Denoting by Y = (0, 1)N the unit cube, the cross-sections Σ(y, v), f(y, v′, v), σ(y, v′, v)
are Y -periodic functions with respect to the space variable y.

Assumption (H1) is somehow classical: the convexity of Ω ensures that the boundary
condition is physically relevant, i.e. that the trajectory of an outgoing neutron does not
enter again in Ω. The first part of (H2) implies that only finite non-zero velocities are con-
sidered. Physically, it means that all neutrons either interact with the media (by absorption
or scattering) or leave the domain in a finite non-zero time. The second part of (H2), namely
that it is the closure of its interior, is a mathematical convenience which allows to define
distributions and Sobolev spaces on V (see [14, chapter 21]). Actually all results presented
here can easily be extended to the multi-group case, i.e. when V is the union of a finite
number of spheres centered at the origin. Remark that in both cases V is not reduced to a
subset of a hyper-plane of IRN , which ensures that a diffusion approximation of transport
makes sense.

The first part of assumption (H3) gives the natural functional framework for the coef-
ficients (i.e. they belong to L∞(Y × V )). Indeed, nuclear reactor cores are heterogeneous
domains with merely bounded discontinuous cross sections. The second part of (H3) implies
that fission occurs everywhere in the phase space and that there is always a net absorption
(i.e. the difference between total absorption and scattering is positive).

Finally the periodicity assumption (H4) is crucial for the homogenization procedure. In
particular our results do not hold true any longer if the cross-sections are the product of
periodic functions with macroscopic modulations, for example Σ(x, xε , v) with a Y -periodic
function Σ(x, y, v). Let us mention however that small perturbations of order ε2 of the cross
sections can be allowed (for example, Σ(xε , v) + ε2Σ′(x, xε , v)). This yields a non essential
generalization of the results presented here (see [7]).

Remark 2.1 Assumption (H3) is not completely satisfactory since it implies that fission
occurs everywhere, which is certainly not the case in the moderator around the fuel rods.
Fortunately, one can replace the first inequality of (3) by the following one

σ(y, v′, v) + f(y, v′, v) ≥ C, for a.e. (y, v, v′),

with σ ≥ 0 and σ 6= 0. This implies merely that fission plus scattering is positive every-
where. Up to some easy technicalities, all our results hold true also with this more physical
assumption.

Introducing the Hilbert space

W 2(Ω × V ) = {u ∈ L2(Ω × V ) s.t. v · ∇u ∈ L2(Ω × V )}, (4)

a first existence result is the following

Theorem 2.2 The spectral problem (2) has at most a countable number of eigenvalues and
of associated eigenvectors which belong to W 2(Ω × V ). Furthermore, there exists a real and
positive eigenvalue, of smallest modulus, with multiplicity one, and such that its associated
eigenvector be the unique (up to a multiplicative constant) positive eigenvector of (2).
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The proof of Theorem 2.2, which is in the spirit of other results in [14, chapter 21], can
be found in [7]. It uses two main arguments. First, the solutions of (2) are shown to be
the eigenvalues and eigenvectors of a positive compact operator in L2(Ω× V ), which implies
that there are at most a countable number of them (possibly complex and finitely many of
them). The compactness is a consequence of assumption (H3) on the cross-sections and of the
velocity averaging lemma of [18] (or similar compactness result in [25]). Second, the Krein
Rutman theory of positive operators asserts that the spectral radius of this compact operator
is a simple eigenvalue and that the corresponding eigenvector is positive. As a consequence
of Theorem 2.2, only the first eigenvector of (2) has a physical meaning since, being positive,
it can indeed model a density of neutrons.

As we shall see in the sequel, the asymptotic behavior of the eigenvectors of (2) is partly
governed by the first eigenvector of another eigenvalue problem, similar to (2), the so-called
infinite medium criticality eigenvalue problem. It is defined by the same equation as (2) but
posed in the whole space IRN , which after rescaling is reduced to an equation posed in the
unit cell Y with periodicity boundary conditions. Denoting by λ∞ and ψ its first eigenvalue
and eigenvector, the infinite medium problem is defined in Y × V by







v · ∇yψ + Σ(y, v)ψ =

∫

V

f(y, v′, v)ψ(y, v′)dv′ + λ∞

∫

V

σ(y, v′, v)ψ(y, v′)dv′

y → ψ(y, v) Y − periodic.
(5)

We shall also need an adjoint problem of (5) which has the same first eigenvalue λ∞ with a
different first eigenvector ψ∗. Introducing the adjoint cross-sections f∗(y, v′, v) = f(y, v, v′)
and σ∗(y, v′, v) = σ(y, v, v′) this adjoint problem is defined by






−v · ∇yψ
∗ + Σ(y, v)ψ∗ =

∫

V

f∗(y, v′, v)ψ∗(y, v′)dv′ + λ∞

∫

V

σ∗(y, v′, v)ψ∗(y, v′)dv′

y → ψ∗(y, v) Y − periodic.

(6)
For problems (5) and (6), only the first eigenvalue and eigenvector are used in the sequel.
As usual they are defined up to a multiplicative constant, but as a corollary of Theorem 2.2
we can choose them positive (therefore they properly model the neutron flux in an infinite
periodic medium).

Theorem 2.3 There exists a common eigenvalue λ∞ for both problems (5) and (6) which is
real positive, of smallest modulus, with multiplicity one, and such that its associated eigen-
vectors ψ and ψ∗ be positive elements of W 2(Y × V ).

Since the smallest eigenvalue λ∞ is simple, we easily deduce from the classical Fredholm
alternative for compact operators the following

Proposition 2.4 Let λ∞ and ψ be the first eigenvalue and eigenvector of (5). Let S(y, v)
be a source term in L2(Y × V ). There exists a solution ϕ(y, v) ∈ W 2(Y × V ) of






v · ∇yϕ+ Σ(y, v)ϕ =

∫

V

f(y, v′, v)ϕ(y, v′)dv′ + λ∞

∫

V

σ(y, v′, v)ϕ(y, v′)dv′ + S(y, v)

y → ϕ(y, v) Y − periodic
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if and only if S is orthogonal to the first eigenvector ψ∗ of (6), i.e. S satisfies the compatibility
condition

∫

Y

∫

V

S(y, v)ψ∗(y, v)dydv = 0.

Furthermore, if it exists, the solution ϕ is unique up to the addition of a multiple of ψ.

Finally, in the next section the first eigenvectors ψ and ψ∗ are required to be bounded
from above and below by positive constants. This is the purpose of the next Proposition
which is based on averaging lemmas [18] and Sobolev inequalities.

Proposition 2.5 Let ψ and ψ∗ be the first positive eigenvectors of problems (5) and (6),
respectively. There exists two positive constants C′ ≥ C > 0 such that, for a.e. (y, v),

0 < C ≤ ψ(y, v) ≤ C′ and 0 < C ≤ ψ∗(y, v) ≤ C′.

Proof. To simplify the notations, we recast both problems (5) and (6) as follows (this is
possible thanks to assumption (H3)). Let ϕ(x, v) be a non-zero positive solution inW 2(Y ×V )
of







v · ∇ϕ+ Σ(x, v)ϕ =

∫

V

σ∞(x, v′, v)ϕ(x, v′)dv′ in Y × V

x→ ϕ(x, v) Y − periodic,
(7)

where Σ and σ∞ are L∞ functions which satisfy

Σ1 ≥ Σ(x, v) ≥ Σ0 > 0 , σ1 ≥ σ∞(x, v′, v) ≥ σ0 > 0 a.e. in Y × V × V.

Let us define two functions g and ϕ̃ by

g(x, v) =

∫

V

σ∞(x, v′, v)ϕ(x, v′)dv′, ϕ̃(x) =

∫

V

ϕ(x, v)dv.

From these definitions, we easily deduce that

σ0ϕ̃(x) ≤ g(x, v) ≤ σ1ϕ̃(x). (8)

Furthermore, integrating equation (7) along its characteristics leads to

∫ ∞

0

g(x− sv, v)e−Σ1sds ≤ ϕ(x, v) ≤
∫ ∞

0

g(x− sv, v)e−Σ0sds. (9)

Here the functions defined on Y × V have been extended to IRN × V by periodicity. If we
can prove that ϕ̃(x) and 1/ϕ̃(x) belong to L∞(Y ), then we deduce from (8) that g(x, v) and
1/g(x, v) belong to L∞(Y ×V ), and from (9) that ϕ(x, v) and 1/ϕ(x, v) belong to L∞(Y ×V ),
which is the desired result.

We divide the proof that ϕ̃(x) is bounded from below and above in two steps: first we
show that ϕ̃(x) belongs to any Lp(Y ) with 2 ≤ p < +∞, and second we show that ϕ̃(x) and
1/ϕ̃(x) belong to L∞(Y ).
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The first step relies on the following averaging lemma [18]. If ϕ and v · ∇ϕ belong to
Lp(Y × V ) for 2 ≤ p < ∞, then ϕ̃(x) belongs to W s,p(Y ) for all 0 < s < 1

p (W s,p(Y ) is

the Sobolev space of functions whose fractional s-derivative belongs to Lp(Y )). By the well-
known Sobolev embedding theorem, W s,p(Y ) ⊂ Lq(Y ) with q = Np/(N − sp), and therefore
ϕ̃(x) ∈ Lq(Y ). In other words, we have

ϕ and v · ∇ϕ ∈ Lp(Y × V ) ⇒ ϕ̃ ∈ Lq(Y ) with p ≤ q <
Np

N − 1
. (10)

As a consequence of inequality (8), ϕ̃ ∈ Lq(Y ) implies that g ∈ Lq(Y × V ), and this is a
standard result in transport theory that, if the source term g belongs to Lq(Y ×V ), then the
solution ϕ of equation (7) belongs to W q(Y ×V ) = {u ∈ Lq(Y ×V ) s.t. v ·∇u ∈ Lq(Y ×V )}.
By assumption, we know that ϕ ∈ W 2(Y × V ). Using the regularity result (10) and a
bootstrap argument, we therefore deduce that ϕ̃ belongs to any Lp(Y ) with 2 ≤ p < +∞.

The second step uses assumption (H2) which implies that V is included in a corona C
defined by its radii 0 < vmin < vmax < +∞

V ⊂ C = {v ∈ IRN s.t. 0 < vmin ≤ |v| ≤ vmax}.

Integrating (9) over V and using (8) yields

ϕ̃(x) ≤ σ1

∫

V

∫ ∞

0

e−Σ0sϕ̃(x− sv)dsdv.

Since V ⊂ C the change of variables y = x− sv from polar to Cartesian coordinates leads to

ϕ̃(x) ≤ C

∫

IRN

e
−

Σ0
vmin

|y−x|

|y − x|N−1
ϕ̃(y)dy

where C is a positive constant which depends on vmin and vmax but not on ϕ. By Hölder
inequality, for any η > 0 there exists a positive constant Cη such that

ϕ̃(x) ≤ C

(

∫

|y−x|≤1

ϕ̃(y)dy

|y − x|N−1
+ ‖ϕ̃‖L2(Y )

)

≤ Cη
(

‖ϕ̃‖LN+η(Y ) + ‖ϕ̃‖L2(Y )

)

,

since 1
|y−x|N−1 belongs to Lp(Y ) for any 1 ≤ p < N

N−1 . We already know that ϕ̃ belongs to

LN+η(Y ) for positive η, therefore we deduce that ϕ̃, and consequently ϕ, is bounded. To
show that 1/ϕ̃ belongs to L∞(Y ), we use a symmetric argument. By assumption (H2) the
interior of V is non-empty. In particular, there exists a velocity v0 and a parameter δ > 0
such that the following angular sector S is included in V

S =

{

v ∈ IRN s.t. 1 − δ ≤ |v|
|v0|

≤ 1 + δ,
v

|v| .
v0
|v0|

≥ 1 − δ

}

⊂ V.

Integrating again (9) over V and using (8) gives

σ0

∫

V

∫ ∞

0

e−Σ1sϕ̃(x− sv)dsdv ≤ ϕ̃(x).

8



Since S ⊂ V the change of variables y = x− sv from polar to Cartesian coordinates leads to

C

∫

CS

e−
Σ1

vmax
|y−x|

|y − x|N−1
ϕ̃(y)dy ≤ ϕ̃(x),

where CS ⊂ IRN is the infinite cone of origin x defined by {x + sv s.t. s ∈ IR+, v ∈ S}.
Clearly, at a possibly large, but finite, distance of x, this cone contains at least one periodicity
cell Y . Hence there exists a positive constant C > 0 such that

C

∫

Y

ϕ̃(y)dy ≤ ϕ̃(x).

By hypothesis, ϕ is non-zero and positive in L2(Y × V ). Therefore,
∫

Y ϕ̃(y)dy > 0 which
provides us with a lower bound for ϕ. 2

3 Main results

This section is devoted to the statement of our main results on the asymptotic analysis of
the spectral problem (2). We proceed in somewhat reverse order. First we state our final
result in Theorem 3.1. The proof relies on an equivalent formulation of the spectral problem
(2), which is amenable to homogenization and given in Proposition 3.4. It also relies on the
homogenization of a source problem established in Theorem 3.6. Although the latter topic
is classical and has been addressed several times (see [11, 14, 20, 21, 29]), we perform our
analysis in a quite different way, using the theory of two-scale convergence and therefore
allowing for less regular physical data.

Let ψ and ψ∗ be the first positive eigenvectors of (5) and (6) respectively. We define a
so-called drift flux by

J =

∫

Y

∫

V

v ψ(y, v)ψ∗(y, v)dy dv, (11)

which is a constant vector in IRN . We require an additional hypothesis on the coefficients
of (2), namely that the drift flux is zero

J = 0.

This assumption on (11) is a kind of symmetry condition in phase space. It can be interpreted
as an energy flux, which must be locally null, and it implies that there is no neutron drift. In
most practical cases this assumption is satisfied. For example, when V = −V (in the sense
that v ∈ V ⇒ −v ∈ V ) and the cross sections do not depend on the velocity variable (this is
the so-called one-velocity isotropic case), J is clearly zero whatever the spatial variations of
the coefficients because

ψ∗(y, v) = ψ(y,−v) a.e. (y, v) ∈ Y × V. (12)

There are other examples where equality (12) is satisfied. Of particular interest is the fol-
lowing case. If V = −V , the cross-sections are symmetric with respect to v, and the cell Y

9



has cubic symmetry, then the drift flux is again zero (this can be checked readily). In most
existing reactors, the cross sections do depend on the velocity variable. Nevertheless, the
symmetry condition is always satisfied (at least as a first approximation); therefore condition
(11) does not shrink the field of practical applications.

However, as it has been shown by Larsen and Williams in the setting of time-dependent
1-D problems with anisotropic scattering [23], there are cases for which J 6= 0. In such a case
J indicates a drift direction, along which neutrons propagate, and the asymptotic regime of
(2) is different (we suspect that the neutrons concentrate at the vicinity of the set of points
x ∈ ∂Ω satisfying J · n(x) < 0, where n(x) is the outward unit normal to ∂Ω at point x).

Let us introduce the εY− periodic function ψε defined by

ψε(x, v) = ψ(
x

ε
, v),

where ψ(y, v) is the positive first eigenvector of (5).

Theorem 3.1 Assume that the drift flux defined by (11) is J = 0. Let λkε be the kth eigen-
value of (2) and let φkε be a normalized associated eigenvector. Then

lim
ε→0

λkε − λ∞
ε2

= νk,

where λ∞ is the first eigenvalue of (5) and νk is the kth eigenvalue of the homogenized
diffusion problem

{

−∇ ·D∇uk(x) = νkσuk(x) in Ω
uk(x) = 0 on ∂Ω.

(13)

Furthermore, up to a subsequence,

φkε(x, v)

ψε(x, v)
→ uk(x) strongly in L2(Ω × V ),

where uk is an eigenvector associated with the eigenvalue νk. The homogenized fission cross
section is given by

σ =

∫

Y

∫

V

∫

V

σ(y, v′, v)ψ∗(y, v′)ψ(y, v)dy dv dv′, (14)

while the homogenized diffusion tensor D = (Dij)1≤i,j≤N in (13) is defined by

Dij = −
∫

Y

∫

V

vjψ(y, v)ψ∗(y, v)θi(y, v)dv dy, (15)

and the functions (θi)1≤i≤N are the solutions of the cell problems

{

v · ∇θi + Q(θi) = −vi in Y × V
y → θi(y, v) Y − periodic,

(16)
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where the local scattering operator Q is defined by

Q(θ) =
θ

ψ

∫

V

σ∞(y, v′, v)ψ(y, v′)dv′ − 1

ψ

∫

V

σ∞(y, v′, v)ψ(y, v′)θ(y, v′)dv′

with the notation σ∞(y, v′, v) = f(y, v′, v) + λ∞σ(y, v′, v).

Remark 3.2 The labeling of the eigenvalues of (2) is made by increasing order of their real
part (they may be complex although, in the limit as ǫ goes to 0, they are all real). As usual,
the eigenvalues of the homogenized diffusion problem (13) are real and labeled by increasing
order. Remark also that, for fixed ǫ, the spectral theory asserts that (2) may have only a
finite number of eigenvalues, but, as ǫ goes to 0, this number increases up to infinity.

In Theorem 3.1 the extraction of a subsequence for the convergence of eigenvectors is
only due to the possible multiplicity of the limit eigenvalue νk. However, in the physically
meaningful case of the first eigenvalue ν1, which is simple, we obtain that the whole sequence
of normalized positive eigenvectors φ1

ε/ψε converges to the positive first eigenvector u1 of the
homogenized problem.

Remark 3.3 Existence and uniqueness of the solutions (θi)1≤i≤N of the cell problems (16)
is a consequence of the zero drift-flux assumption J = 0. Indeed, upon defining χi = ψθi, it
is easily seen that χi satisfies







v · ∇χi + Σχi =

∫

V

fχidv′ + λ∞

∫

V

σχidv′ − viψ

y → χi(y, v) Y − periodic,

for which Proposition 2.4 applies: J = 0 is simply its compatibility condition (or Fredholm
alternative). With this new notation, the diffusion tensor D is given by the so-called Kubo
formula (see [11])

Dij = −
∫

Y

∫

V

vjψ
∗(y, v)χi(y, v)dv dy.

Formula (15) has first been derived by Larsen [20] using formal two-scale asymptotic ex-
pansions. As already said in the introduction there are several formulae for the diffusion
coefficient of a heterogeneous periodic network of cells in the physical literature (see e.g.
[15]). Formula (15) is the only one to be correct asymptotically but others (like the well-
known Benoist formula) are derived by using conservation or equivalence principle. For the
sake of comparison, we recall the uncorrected Benoist formula (see [10, 15]) in the limit of
small buckling and for symmetric cells (in which case D is diagonal)

Dii = −
∫

Y

∫

V

viψ(y, v)ji(y, v)dv dy,

and the functions (ji)1≤i≤N are the solutions of

{

v · ∇ji + Q(ji) = −vi on Ω × V
y → ji(y, v) Y − periodic,
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while the cross sections are simply averaged with the weight ψ

σ =

∫

Y

∫

V

∫

V

σ(y, v′, v)ψ(y, v)dy dv dv′.

Remark that the difference between our formula and the Benoist one is the factor ψ∗.

In order to prove Theorem 3.1, we first establish that the original spectral problem (2) is
equivalent to another problem (that will be amenable to homogenization) through a factor-
ization principle.

Proposition 3.4 Let ψ(y, v) be the positive first eigenvector of (5). Then, the linear appli-
cation

φ(x, v) → u(x, v) =
φ(x, v)

ψ(xε , v)

is continuous in L2(Ω× V ) and has a continuous inverse. Through this change of variables,
the original spectral problem (2) is equivalent to











1

ε
v · ∇uε +

1

ε2
Qε(uε) = νεFε(uε) on Ω × V

uε = 0 on Γ−,

(17)

where we have defined

νε =
λε − λ∞

ε2
,

Qε(u) =
u

ψε

(
∫

V

σε∞(x, v′, v)ψε(x, v
′)dv′

)

− 1

ψε

(
∫

V

σε∞(x, v′, v)ψε(x, v
′)u(x, v′)dv′

)

, (18)

Fε(u) =
1

ψε

∫

V

σε(x, v′, v)ψε(x, v
′)u(x, v′)dv′, (19)

with the notation σε∞(x, v′v) = fε(x, v′, v) + λ∞σ
ε(x, v′, v).

Proof. By Proposition 2.5, we know that ψ(y, v) is bounded from below and from above
by two positive constants. Therefore, if φε ∈ L2(Ω × V ), we can define uε(x, v) = φε

ψε
which

also belongs to L2(Ω× V ). Reciprocally, if uε ∈ L2(Ω× V ), then φε(x, v) = uεψε belongs to
L2(Ω × V ). Using the infinite medium equation (5) satisfied by ψ, the equivalence between
(2) and (17) is just a matter of simple algebra that we leave to the reader. 2

Remark 3.5 The idea of the factorization in Proposition 3.4 is familiar in nuclear physics.
Basically it amounts to remarking that both functions ψε and φε satisfy equation (2) on
Ω×V . The only difference between these two solution is their boundary condition. Thus it is
expected that both functions behave similarly away from the boundary of Ω. Indeed, this holds
true in the sense that uε is shown to vary smoothly with respect to the variable x away from
the boundary, and to be almost independent of the fast variable x

ε and the velocity variable v.
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At first sight, problem (17) does not seem to be much simpler than (2), but it turns out
that optimal a priori estimates can be obtained with (17) rather than (2). We also emphasize
that the equivalence between (2) and (17) is a consequence of the strict periodicity assumption
(H4) and does not hold true any longer if the cross sections are not periodic functions.

The scattering operator Qε defined by (18) is the same as the local scattering operator Q
defined in Theorem 3.1 after the change of variables y = x/ε. Its effect is to relax the angular
flux to its velocity average (see the energy estimates in section 4). It is a linear continuous
operator in any Lp(Ω × V ), for 1 ≤ p ≤ ∞, which satisfies the following properties

Ker Qε =

{

u ∈ Lp(Ω × V ); u(x, v) =

∫

V

u(x, v)dv

}

,

Qε (ϕ(x)u(x, v)) = ϕ(x) Qε(u(x, v)) and Qε(u) = Qε

(

u−
∫

V

u(x, v)dv

)

.

The spectral analysis of equation (17) is obtained from the spectral properties of an
operator Sε defined as follows.

Sε :
L2(Ω × V ) −→ L2(Ω × V )

q(x, v) 7−→ uε(x, v),
(20)

where uε is the solution of the following source problem associated with (17)

{

1

ε
v · ∇uε +

1

ε2
Qε(uε) = Fε(q) on Ω × V

uε = 0 on Γ−.
(21)

The well-posedness of (21) in L2(Ω × V ) can easily be obtained from standard transport
theories by using the a priori estimates of section 4 (which imply that the scattering kernel
Qε has well-suited properties). Alternatively we can use the reverse change of variables of
Proposition 3.4 and prove that φε = ψεuε is the solution of a source problem analogue to
(2) where we replace λε

∫

V σ
ε(x, v′, v)φε(x, v

′)dv′ by ψεFε(q). Then, classical results (see e.g.
[14, chap.21]) yield the existence and uniqueness of φε, and therefore uε, in W 2(Ω × V ).

The eigenvalues of the operator Sε are exactly the inverses of those of problem (17) with
the same associated eigenvectors. From the analysis of the convergence of the sequence of
operators Sε we shall obtain the asymptotic behavior of its spectrum. The following result,
which is proved in section 5, gives the homogenized limit operator.

Theorem 3.6 Assume that the drift flux defined by (11) satisfies J = 0. Then the sequence
of solutions uε(x, v) of (21) converges strongly in L2(Ω × V ) to the unique solution u(x) ∈
H1

0 (Ω) of the following diffusion problem

{

−∇ ·D∇u(x) = F (q)(x) in Ω
u(x) = 0 on ∂Ω,

(22)
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where D = (Dij)1≤i,j≤N is the positive definite constant matrix defined by (15), and F (q) ∈
L2(Ω) is given by

F (q)(x) =

∫

Y

∫

V

∫

V

σ(y, v′, v)ψ∗(y, v′)ψ(y, v)q(x, v)dv dy dv′. (23)

When the drift flux is non zero (J 6= 0), the sequence uε(x, v) converges strongly to 0 in
L2(Ω × V ).

Remark 3.7 The homogenization of the source problem (21) fits into the framework of pre-
vious works in homogenization of transport equations [11, 14, 20, 21, 29]. Let us emphasize
however that Theorem 3.6 is new for two reasons. First, our proof uses the notion of two-scale
convergence instead of two-scale asymptotic expansions: this allows to remove all smoothness
assumptions on the coefficients that are simply asked to be measurable and bounded (this is
the natural setting for heterogeneous media). Second, the special structure of the scattering
kernel Qε allows us to homogenize (21) without adding extra absorption as is the case usu-
ally. Indeed, we establish in section 4 that the sequence of solutions of (21) is bounded using
a coercivity property of Qε combined with a Poincaré-type inequality. Of course, Theorem
3.6 is easily generalized if we add an extra absorption term αuε in (21), with α ≥ 0, which
yields an additional term αu in (22).

Assuming for the moment that Theorem 3.6 holds true, we are in a position to complete the
Proof of Theorem 3.1. Let us define the homogenized limit operator S by

S :
L2(Ω × V ) → L2(Ω × V )

q(x, v) 7→ u(x),

where u is the solution of (22-23). Clearly S is a compact operator. We deduce from the
homogenization Theorem 3.6 that the sequence Sε converges to S pointwise in the strong
topology of L2(Ω × V ), i.e.

∀q ∈ L2(Ω × V ) Sεq → Sq strongly in L2(Ω × V ).

Furthermore, as a consequence of Corollary 4.2, given in section 4, the sequence Sε converges
compactly to S in the sense that for any bounded sequence qε in L2(Ω × V ), the sequence
Sεqε is relatively compact in L2(Ω × V ). Finally, Theorem 3.8 below allows to conclude the
proof of Theorem 3.1. Remark in passing that the convergence of Sε to S cannot be uniform
in general because, if qε converges weakly to q in L2(Ω × V ), there is usually no reason for
Fε(qε) to converge to F (q). 2

We now recall a classical result in operator theory that can be found, for example, in [6]
or in [13] (see Theorem 5.5, Proposition 5.6, Theorem 5.10, Theorem 5.20, and Proposition
5.28 in [13]).

Theorem 3.8 Let X be a Banach space and L(X) be the set of bounded linear operators in
X. Let {Tn}n∈ IN be a sequence of operators in L(X) converging compactly to T in the sense
that:
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• for all x ∈ X, Tnx→ Tx as n→ ∞,

• for any bounded sequence {xn}n∈ IN with ‖xn‖ ≤ 1, the sequence {(T −Tn)xn}n∈ IN is
relatively compact in X.

Let σ(T ) and σ(Tn) be the spectra of T and Tn, respectively. Let λ be an isolated eigenvalue
of T of finite multiplicity and let Γ be a closed Jordan curve in the complex plane around λ
and isolating λ such that the domain ∆ enclosed by Γ contain no other point of the spectrum
σ(T ) than λ. Then, σ(Tn) ∩ ∆ contains a number of eigenvalues equal to the multiplicity of
λ provided n is large enough.

Moreover, if λn is a sequence of eigenvalues of Tn converging to λ, and un is a sequence
of normalized associated eigenvectors, then, up to a subsequence, un converges to a limit u
in X which is an eigenvector of T associated with λ.

4 A priori estimates

The first step in the proof of Theorem 3.6 is to derive an a priori energy estimate for the
source problem (21). From this we shall derive two main results: first the solution of (21) is
bounded in W 2(Ω×V ) independently of ε, and second the rate of convergence of the angular
flux to its mean and of the boundary trace of the flux to 0 is characterized. More precisely,
the following a priori estimates hold true.

Lemma 4.1 Let uε be the unique solution of (21). There exists a positive constant C, which
does not depend on ε and q, such that

‖uε‖L2(Ω×V ) + ‖v · ∇uε‖L2(Ω×V ) +
1√
ε
‖uε‖L2(Γ+,|v·n|)

+
1

ε
‖uε −

∫

V

uε‖L2(Ω×V ) ≤ C‖q‖L2(Ω×V ),
(24)

where L2(Γ+, |v · n|) is the trace space of functions u satisfying
∫

Γ+
(v · n) |u|2dΓ < ∞ with

Γ+ = {(x, v) ∈ ∂Ω× V | v · n(x) > 0} and dΓ = dvdσ (dσ being the surface measure on ∂Ω).

Proof. We multiply equation (21) by uεψεψ
∗
ε and integrate to obtain

I1 + I2 =

∫

Ω

∫

V

Fε(q)ψεψ
∗
εuεdx dv.

The first term is

I1 =
1

ε

∫

Ω

∫

V

v · ∇uε(uεψεψ∗
ε)dx dv =

1

ε

∫

Γ+

|uε|2ψεψ∗
εv · n dvdσ

−1

ε

∫

Ω

∫

V

v · ∇uε(uεψεψ∗
ε)dx dv − 1

ε

∫

Ω

∫

V

|uε|2v · ∇(ψεψ
∗
ε)dx dv.
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Multiplying the infinite medium equation (5) by ψ∗ and subtracting the adjoint equation (6)
multiplied by ψ yields

v · ∇(ψψ∗) = ψ∗

∫

V

ψ(y, v′)σ∞(y, v′, v)dv′ − ψ

∫

V

ψ∗(y, v′)σ∗
∞(y, v′, v)dv′

where σ∗
∞(y, v′, v) = σ∞(y, v, v′). Denoting by σε∗∞(x, v′, v) = σε∞(x, v, v′), we deduce that

1

ε

∫

Ω

∫

V

|uε|2v · ∇(ψεψ
∗
ε)dx dv =

1

ε2

∫

Ω

∫

V

|uε|2
(

ψ∗
ε

∫

V

ψεσ
ε
∞ − ψε

∫

V

ψ∗
εσ

ε∗
∞

)

dxdv.

This yields the following expression for the first integral I1

I1 =
1

2ε

∫

Γ+

|uε|2ψεψ∗
εv · n dvdσ − 1

2ε2

∫

Ω

∫

V

|uε|2
(

ψ∗
ε

∫

V

ψεσ
ε
∞ − ψε

∫

V

ψ∗
εσ

ε∗
∞

)

dxdv.

The second term is given by

I2 =
1

ε

∫

Ω

∫

V

Qε(uε)(uεψεψ
∗
ε)dxdv =

1

ε2

∫

Ω

∫

V

|uε|2ψ∗
ε

(
∫

V

σε∞ψε

)

dxdv

− 1

ε2

∫

Ω

∫

V

uεψ
∗
ε

(
∫

V

σε∞ψεuε

)

dxdv.

Summing I1 and I2 we have

I1 + I2 =
1

2ε

∫

Γ+

|uε|2ψεψ∗
εv · n dv dσ +

1

2ε2

∫

Ω

∫

V

[

|uε|2ψ∗
ε

(
∫

V

σε∞ψε

)

+|uε|2ψε
(
∫

V

σ∗ε
∞ψ

∗
ε

)

− 2uεψ
∗
ε

(
∫

V

σε∞ψεuε

)]

dxdv,

or equivalently

I1 + I2 =
1

2ε

∫

Γ+

|uε|2ψεψ∗
εv · n dv dσ

+
1

2ε2

∫

Ω

∫

V

∫

V

σε∞(v′, v)ψ∗
ε(v)ψε(v

′)|uε(v) − uε(v
′)|2dv dv′ dx.

From Proposition 2.5, we know that ψ∗
εσ

ε
∞ψε is bounded from below by a positive constant.

On the other hand we easily check that

∫

Ω

∫

V

∫

V

|uε(v) − uε(v
′)|2dx dv dv′ =

∫

Ω

∫

V

∣

∣

∣

∣

uε −
∫

V

uεdv
′

∣

∣

∣

∣

2

dx dv.

Therefore, we deduce the a priori estimate (recall that v · n > 0 on Γ+)

1

ε
‖uε‖2

L2(Γ+,|v·n|)
+

1

ε2
‖uε −

∫

V

uεdv‖2
L2(Ω×V ) ≤ C‖uε‖L2(Ω×V )‖q‖L2(Ω×V ). (25)
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On the other hand, equation (21) implies that

‖v · ∇uε‖L2(Ω×V ) ≤ C

[

ε‖q‖L2(Ω×V ) +
1

ε
‖Qε(uε)‖L2(Ω×V )

]

. (26)

From the properties of the scattering kernel Qε, we deduce that

‖Qε(uε)‖L2(Ω×V ) = ‖Qε(uε −
∫

V

uεdv)‖L2(Ω×V ) ≤ C‖uε −
∫

V

uεdv‖L2(Ω×V ). (27)

Finally the Poincaré inequality in Lemma 4.3 gives

‖uε‖L2(Ω×V ) ≤ C
[

‖uε‖L2(Γ+,|v·n|) + ‖v · ∇uε‖L2(Ω×V )

]

. (28)

A combination of inequalities (25,26,27,28) yields the desired result. 2

Corollary 4.2 Let qε be a bounded sequence in L2(Ω × V ). Let uε be the solution of (17)
with the source term qε instead of q. Then the sequence uε is relatively compact in L2(Ω×V ).

Proof. Remark that the energy estimate (24) holds true also for the source term qε. There-
fore, uε and v · ∇uε are bounded in L2(Ω × V ). By virtue of the averaging lemma [18], we
deduce that

∫

V
uεdv is relatively compact. But (24) implies that uε −

∫

V
uεdv goes to 0

strongly in L2(Ω × V ) which proves the relative compactness. 2

We now state a trace embedding result which is the analogue in transport theory of the
Poincaré inequality for elliptic operators. Recall that, by assumptions (H1) and (H2), Ω is a
bounded and convex open set in IRN , and that V is a compact set in IRN such that 0 6∈ V .
Let us define the following maximum travel time of a particle (in the absence of collisions)

τ(x, v) = inf{t > 0, x− vt 6∈ V }, (x, v) ∈ Γ+

τ(x, v) = inf{t > 0, x+ vt 6∈ V }, (x, v) ∈ Γ−.
(29)

Remark that, since Ω is bounded, τ(x, v) is bounded independently of (x, v) ∈ ∂Ω × V . Let
us also introduce the following measure on ∂Ω × V

dξ = |v · n|τ(x, v)dvdσ,

where dσ is the surface measure on ∂Ω.

Lemma 4.3 Any function u(x, v) ∈ W 2(Ω × V ) has traces on Γ+ and Γ− which belong to
L2(Γ+, dξ) and L2(Γ−, dξ) respectively. Furthermore, there exists a constant C, independent
of u, such that

‖u‖L2(Ω×V ) + ‖u‖L2(Γ+,dξ) ≤ C
(

‖v · ∇u‖L2(Ω×V ) + ‖u‖L2(Γ−,dξ)

)

. (30)

Proof. The first part of the lemma is simply the usual trace theorem in transport theory (see
e.g. [14]). Thus it remains to prove inequality (30). For any smooth function u(x, v) ∈ Ω×V ,
we have

u(x, v) =

∫ d(x,v)

0

v · ∇u(x− sv, v)ds+ u(x, v),
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where d(x, v) is the distance between x ∈ Ω and ∂Ω in the direction −v and x the point in
∂Ω uniquely defined by

x = x− d(x, v)v. (31)

Since Ω is a bounded domain we deduce from the Cauchy-Schwartz inequality

|u(x, v)|2 ≤ C

(

∫ d(x,v)

0

(v · ∇u)2(x− sv, v)ds+ |u(x, v)|2
)

. (32)

Denoting by χ(x) the characteristic function of Ω (equal to 1 if x ∈ Ω and 0 otherwise), and
integrating with respect to x the first term in the right hand side of (32) leads to

∫

Ω

∫ d(x,v)

0

|v · ∇u|2(x− sv, v)dsdx

=

∫

Ω

∫ diam(Ω)

0

χ(x− sv)|v · ∇u|2(x− sv, v)dsdx

=

∫ diam(Ω)

0

∫

Ω+sv

χ(y)|v · ∇u|2(y, v)dyds

=

∫ diam(Ω)

0

∫

(Ω+sv)∩Ω

|v · ∇u|2(y, v)dyds ≤ diam(Ω)

∫

Ω

|v · ∇u|2(y, v)dy.

(33)

We now integrate with respect to x the second term in the right hand side of (32). For a
given velocity v we introduce an orthonormal basis (x1, . . . , xn) = (x′, xn) such that xn is
parallel to v. The boundary point x, defined by (31), is thus a function of x′ only. Then

∫

Ω

|u(x, v)|2dx =

∫

IRN−1
|u(x, v)|2

(
∫

IR
χ(x)dxn

)

dx′ =

∫

Ω′

|u(x, v)|2τ(x, v)dx′,

where Ω′ is the projection of Ω on IRN−1. Since Ω is convex, there is a diffeomorphism
between Ω′ and that part of the boundary defined by Γ−

v = {x ∈ ∂Ω, n(x) ·v < 0}. Changing
the variable x′ in x ∈ Γ−

v yields dx′ = |v · n|dσ and

∫

Ω

|u(x, v)|2dx =

∫

Γ−

v

|v · n|τ(x, v)|u(x, v)|2dσ. (34)

Integrating over V inequalities (33) and (34) gives an upper bound for the norm of u in
L2(Ω × V ). The same method can be applied to obtain an upper bound of the L2(Γ+, dξ)-
norm of u in terms of the L2(Ω × V )-norm of u and v · ∇u, which yields the desired result.
2

5 Convergence proof

This section is devoted to the proof of Theorem 3.6. We use the two-scale convergence
method [2, 26]. Let us remark that the more classical method of asymptotic expansions can
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also be used to prove this theorem [7, 8]. However this is at the price of more assumptions
on the smoothness of the physical data.

Let us introduce some notations that we shall use in the derivation of the two-scale
convergence properties. We denote by C∞

# (Y ) the space of infinitely differentiable functions

in IRN that are periodic of period Y , and L2
#(Y ) (respectively, H1

#(Y )) the completion of

C∞
# (Y ) for the norm of L2(Y ) (respectively, H1(Y )). Generalizing the usual definition of

two-scale convergence to functions that depend on two variables x and v, we introduce the
following

Definition 5.1 A sequence of functions uε in L2(Ω × V ) is said to two-scale converge to a
limit u0(x, y, v) in L2(Ω × Y × V ) if, for any function ψ(x, y, v) in D[Ω × V ; C∞

# (Y )], we
have

lim
ε→0

∫

Ω

∫

V

uε(x, v)ψ
(

x,
x

ε
, v
)

dx dv =

∫

Ω

∫

Y

∫

V

u0(x, y, v)ψ(x, y, v)dx dy dv. (35)

This definition makes sense because of the following compactness theorem (the proof of
which is a straightforward adaptation of Lemma 1.3 and Theorem 1.2 in [2]).

Theorem 5.2 From each bounded sequence uε in L2(Ω × V ) we can extract a subsequence,
and there exists a limit u0(x, y, v) in L2(Ω × Y × V ) such that this subsequence two-scale
converges to u0.

We now prove a result which is the analogue of [2, Proposition 1.14] for transport theory.

Proposition 5.3 Let uε be a sequence in L2(Ω × V ) such that there exists a constant C,
independent of ε, satisfying

‖uε‖L2(Ω×V ) + ‖v · ∇uε‖L2(Ω×V ) ≤ C, uε = 0 on Γ−,

‖uε‖L2(Γ+,|v·n|) ≤ C
√
ε, ‖uε −

∫

V

uεdv‖L2(Ω×V ) ≤ Cε.

Then, there exists u0(x) in H1
0 (Ω) and u1(x, y, v) in L2(Ω × V ;H1

#(Y )) such that, up to the

extraction of subsequences, uε(x, v) converges strongly to u0(x) in L2(Ω × V ), v · ∇uε(x, v)
two-scale converges to v · ∇xu

0 + v · ∇yu
1, and ε−1

(

uε −
∫

V
uεdv

)

two-scale converges to
(

u1 −
∫

V u
1dv
)

.

Proof. Since uε is bounded in L2(Ω×V ), Theorem 5.2 implies the existence of u0(x, y, v) ∈
L2(Ω × Y × V ) such that, up to a subsequence, uε two-scale converges to u0. Since ‖uε −
∫

V uεdv‖ ≤ Cε we deduce that

u0(x, y, v) =

∫

V

u0(x, y, v)dv.

On the other hand, v ·∇uε being bounded in L2(Ω×V ), for any smooth Y -periodic function
ψ(x, y, v) we have

lim
ε→0

ε

∫

Ω

∫

V

v · ∇uεψ(x,
x

ε
, v)dx dv = lim

ε→0
−
∫

Ω

∫

V

uεv · ∇yψ(x,
x

ε
, v)dx dv = 0,
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which implies in the limit as ε goes to zero that
∫

Ω

∫

Y

∫

V

u0(x, y)v · ∇yψ(x, y, v)dx dy dv = 0.

Consequently we have v · ∇yu
0(x, y) = 0. Since V contains at least a basis of IRN (this

is clearly true for a velocity space of unit measure and for an union of spheres), we easily
deduce that

u0(x, y) ≡ u0(x). (36)

To prove the strong convergence of uε, we use the compactness result of the averaging lemma
in [18] which states that, uε and v·∇uε being bounded in L2(Ω×V ),

∫

V uε(x, v)dv is relatively
compact in L2(Ω). By assumption ‖uε −

∫

V
uε(x, v)dv‖L2(Ω×V ) ≤ Cε which implies that uε

converges strongly to u0 in L2(Ω × V ).
Next, we focus on the two scale convergence of v · ∇uε. Since it is a bounded sequence in

L2(Ω × V ), by virtue of Theorem 5.2 there exists ξ(x, y, v) ∈ L2(Ω × Y × V ) such that, up
to a subsequence, v · ∇uε two-scale converges to ξ. Denoting by L2

#(Ω×Y ×V ) the space of

Y -periodic functions in L2(Ω × Y × V ), let us define its subspace

H = {ψ ∈ L2
#(Ω × Y × V ) s.t. v · ∇yψ = 0}.

Clearly H is a closed subspace of L2
#(Ω × Y × V ) and, by Fourier analysis, its orthogonal is

easily seen to be

H⊥ = {φ ∈ L2
#(Ω × Y × V ) s.t. ∃ψ ∈ L2

#(Ω × Y × V ), φ = v · ∇yψ}.

For a smooth function φ ∈ H , having compact support in Ω, we have
∫

Ω

∫

V

v · ∇uεφ(x,
x

ε
, v)dx dv = −

∫

Ω

∫

V

uεv · ∇xφ(x,
x

ε
, v)dx dv.

Passing to the two-scale limit and integrating by parts we get
∫

Ω

∫

Y

∫

V

[

ξ(x, y, v) − v · ∇xu
0(x)

]

φ(x, y, v)dx dy dv = 0. (37)

By density (37) holds true for any φ ∈ H . Choosing φ = φ(x, v) implies that v · ∇xu
0 =

∫

Y ξdy and therefore v · ∇xu
0(x) belongs to L2(Ω × V ), which in turn implies u0 ∈ H1(Ω).

Eventually, (37) is equivalent to
[

ξ(x, y, v) − v · ∇xu
0(x)

]

∈ H⊥. Thus there exists a (non-
unique) function ũ1(x, y, v) ∈ L2

#(Ω × Y × V ) such that

ξ(x, y, v) = v · ∇xu
0(x) + v · ∇yũ

1(x, y, v).

Finally we show that u0 vanishes on the boundary ∂Ω. Consider a smooth function φ(x, v).
Since uε = 0 on Γ− an integrations by parts yields

∫

Ω

∫

V

v · ∇uεφdx dv = −
∫

Ω

∫

V

uεv · ∇φdx dv +

∫

Γ+

uε(s, v)φ(s, v)v · n dv dσ.
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Since ‖uε‖L2(Γ+,|v·n|) ≤ C
√
ε, passing to the limit leads to

∫

Ω

∫

Y

∫

V

(v · ∇xu
0 + v · ∇yũ

1)φdx dy dv = −
∫

Ω

∫

Y

∫

V

u0v · ∇xφdx dy dv.

By periodicity
∫

Y
v · ∇yũ

1dy = 0, and therefore integrating by parts gives
∫

Γ+

φ(x, v)u0(x)v · n dv dσ = 0,

for any smooth function φ(x, v), which implies u0(x) = 0 on ∂Ω.
Next, we study the two-scale convergence of wε = ε−1(uε−

∫

V
uε). Since, by assumption,

it is a bounded sequence in L2(Ω × V ), there exists a function w(x, y, v) ∈ L2(Ω × Y × V )
such that, up to a subsequence, wε two-scale converges to w(x, y, v). Let us introduce the
space

G = {φ ∈ L2
#(Ω × Y × V ) s.t.

∫

V

v · ∇yφ(x, y, v)dv = 0}.

It is a closed subspace of L2
#(Ω × Y × V ) and, by Fourier analysis, one can check that its

orthogonal is

G⊥ = {φ ∈ L2
#(Ω × Y × V ) s.t. ∃θ(x, y) ∈ L2

#(Ω × Y ) φ = v · ∇yθ}.

Let φ(x, y, v) be a smooth function in G with compact support in Ω. Then

ε

∫

Ω

∫

V

wεv · ∇
(

φ(x,
x

ε
, v)
)

dx dv = −ε
∫

Ω

∫

V

φ(x,
x

ε
, v)v · ∇wεdx dv,

or equivalently
∫

Ω

∫

V

wε(v · ∇yφ+ εv · ∇xφ)dx dv

= −
∫

Ω

∫

V

φv · ∇uεdx dv +

∫

Ω

∫

V

φv · ∇
(
∫

V

uεdv

)

dx dv

= −
∫

Ω

∫

V

φv · ∇uεdx dv −
∫

Ω

∫

V

(
∫

V

uεdv

)(

v · ∇xφ+
1

ε
v · ∇yφ

)

dx dv

= −
∫

Ω

∫

V

φv · ∇uεdx dv −
∫

Ω

∫

V

(
∫

V

uεdv

)

v · ∇xφdx dv.

Passing to the two-scale limit yields
∫

Ω

∫

Y

∫

V

wv · ∇yφdx dy dv = −
∫

Ω

∫

Y

∫

V

φ(v · ∇xu
0 + v · ∇yũ

1)dx dy dv

−
∫

Ω

∫

Y

∫

V

u0v · ∇xφdx dy dv.

Integrating by parts, we deduce that, for any φ ∈ G,
∫

Ω

∫

Y

∫

V

(−v · ∇yw + v · ∇yũ
1)φdxdydv = 0.
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Therefore v ·∇y(ũ
1−w) belongs to G⊥ and there exists a function θ(x, y) ∈ L2

#(Ω×Y ) such

that v · ∇y(w − ũ1 − θ) = 0. In other words we have just proved that

w(x, y, v) = ũ1(x, y, v) + θ(x, y) + η(x, y, v) with η ∈ L2
#(Ω × Y × V ), v · ∇yη = 0.

Recall that the function ũ1, deduced from (37), is not unique. Consequently, introducing
u1 = ũ1 + η, the sequence v · ∇uε still two-scale converges to v · ∇xu

0 + v · ∇yu
1, and

furthermore we have
w(x, y, v) = u1(x, y, v) + θ(x, y).

By definition
∫

V
wε(x, v)dv = 0, so that

∫

V
w(x, y, v)dv = 0. This implies that

θ(x, y) = −
∫

V

u1(x, y, v)dv,

which concludes the proof. 2

We turn to the homogenization of problem (21). From now on, uε denotes the unique
solution of (21) and u0, u1 are the associated two-scale limits given by Proposition 5.3 (up
to a subsequence). Recall that ψ and ψ∗ are the solutions of the infinite medium problems
(5) and (6) respectively.

Proposition 5.4 If the drift flux J =
∫

Y

∫

V
vψψ∗dvdy is non-zero, then u0(x) = 0 and the

entire sequence uε converges strongly to 0 in L2(Ω × V ). If J = 0, then u1 and u0 satisfy

u1(x, y, v) =
N
∑

j=1

∂u0

∂xj
(x)θj(y, v),

where θj is the unique solution of (16) up to an additive constant.

Proof. Let φ(x, y, v) be a smooth Y -periodic function. Multiplying (21) by εφ(x, xε , v) yields
∫

Ω

∫

V

v · ∇uεφdx dv + ε−1

∫

Ω

∫

V

Qε(uε)φdx dv =

∫

Ω

∫

V

εφFε(q).

Recalling that ε−1Qε(uε) = Qε(wε) (see Remark 3.5), and introducing the adjoint scattering
kernel Q∗

ε, we obtain

ε−1

∫

Ω

∫

V

Qε(uε)φdx dv =

∫

Ω

∫

V

wεQ
∗
ε(φ)dx dv.

We easily check that Q∗
ε(φ(x, xε , v)) two-scale converges to Q∗(φ), and furthermore that

lim
ε→0

‖Q∗
ε(φ(x,

x

ε
, v))‖L2(Ω×V ) = ‖Q∗(φ(x, y, v))‖L2(Ω×Y×V ),

which is precisely the condition for passing to the two-scale limit in a product of two weakly
converging sequences (see Theorem 1.8 in [2])

lim
ε→0

∫

Ω

∫

V

wεQ
∗
ε(φ)dx dv =

∫

Ω

∫

Y

∫

V

(

u1 −
∫

V

u1dv′
)

Q∗(φ)dx dy dv.
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As a consequence we obtain
∫

Ω

∫

Y

∫

V

(v · ∇xu
0 + v · ∇yu

1)φdx dy dv +

∫

Ω

∫

Y

∫

V

Q(u1 −
∫

V

u1dv′)φdx dy dv = 0,

which implies that u1 is a solution of

v · ∇yu
1 +Q(u1) = −v · ∇xu

0.

Since u0 does not depend on y and v, we have u1 =
∑N

j=1
∂u0

∂xj
θj where each θj(y, v) is a

solution of
{

v · ∇θj +Q(θj) = −vj in Y × V
y → θj(y, v) Y − periodic.

(38)

The existence theory for (38) can be addressed directly, but it is simpler to remark that the
product χj = ψθj is a solution of







v · ∇χj + Σχj =

∫

V

fχjdv′ + λ∞

∫

V

σχjdv′ − vjψ

y → χj(y, v) Y − periodic

for which Proposition 2.4 applies. It states that there exists a solution χj if and only if the
j-th component of the drift-flux is Jj = 0, and it is unique up to the addition of a multiple
of ψ. Therefore, either Jj =

∫

Y

∫

V
vjψψ

∗ = 0 and there exists a unique solution θj (up to an
additive constant) of (38), or Jj 6= 0 and there is no solution except 0 if the right-hand-side

is 0, which implies that ∂u0

∂xj
= 0, i.e. u0 = 0 due to the boundary condition. 2

Before deriving the main convergence result of this paper, we prove that the postulated
homogenized diffusion matrix is actually positive definite. This is the aim of the following
lemma.

Lemma 5.5 The diffusion tensor D = (Dij)1≤i,j≤N , defined by

Dij = −
∫

Y

∫

V

vjψ(y, v)ψ∗(y, v)θi(y, v)dv dy,

is positive definite.

Proof. Let ξ ∈ IRN and θξ =
∑N
i=1 ξiθ

i. Multiplying the cell equation satisfied by θξ by
θξψψ

∗, a computation similar to that of Lemma 4.1 yields

Dξ · ξ =

∫

Y

∫

V

(v · ∇yθξ +Q(θξ))θξψψ
∗dy dv

=
1

2

∫

Y

∫

V ′

∫

V

σ∞ψ
∗(v)ψ(v′)|θξ(v) − θξ(v

′)|2dy dv dv′.

This implies that Dξ · ξ ≥ 0 for all ξ ∈ IRN . Assume now that Dξ · ξ = 0. It implies that θξ
does not depend on v, and thus Q(θξ) = 0. This yields

v · ∇yθξ = v · ξ in Y × V.
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Since V contains N independent directions and θξ does not depend on v, we conclude that
∇yθξ = −ξ which is not possible for a Y -periodic function except if ξ = 0. This proves that
there exists a positive constant C such that Dξ · ξ ≥ C|ξ|2. 2

Remark 5.6 The homogenized diffusion matrix D defined in Lemma 5.5 is not necessarily
symmetric. However only its symmetric part plays a role in the homogenized equation (22)
since it can easily be checked that adding to it a constant skew-symmetric matrix does not
change the solution of the diffusion equation.

After these preliminaries we are in a position to prove Theorem 3.6. For the reader’s
convenience, we recall it here.

Theorem 5.7 If J = 0, then the entire sequence uε converges to u0(x) in L2(Ω×V ), which
is the unique solution in H1

0 (Ω) of

{

−∇ ·D∇u(x) = F (q)(x) in Ω
u(x) = 0 on ∂Ω,

where the diffusion tensor D is defined as in Lemma 5.5, and F (q) ∈ L2(Ω) is given by

F (q)(x) =

∫

Y

∫

V

∫

V

σ(y, v′, v)ψ∗(y, v′)ψ(y, v)q(x, v)dv dv′ dy.

Proof. Let us first define, for 1 ≤ i ≤ N , the adjoint equation of the cell problem (38)

{

−v · ∇y(ψψ
∗θ∗i ) +Q∗(ψψ∗θ∗i ) = viψψ

∗ in Y × V
y → θ∗i (y, v) Y − periodic,

(39)

which admits a unique solution, up to an additive constant, since
∫

Y

∫

V viψψ
∗dy dv = 0. Let

φ(x) be a smooth function with compact support in Ω. We define

φ1(x, y, v) =
N
∑

i=1

∂φ

∂xi
(x)θ∗i (y, v)

and
φε(x, v) = φ(x) + εφ1(x,

x

ε
, v).

Remark that the test function φε has the same structure as the two-scale limit of uε but
adjoint (this is an usual rule of thumb for constructing test functions in homogenization).
Multiplying equation (21) by φεψεψ

∗
ε and integrating by parts yields

−1

ε

∫

Ω

∫

V

uεv · ∇(φεψεψ
∗
ε) +

1

ε2

∫

Ω

∫

V

uεQ
∗
ε(φ

εψεψ
∗
ε) =

∫

Ω

∫

V

φεψεψ
∗
εFε(q). (40)
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The first term in (40) becomes

K1 =

∫

Ω

∫

V

[

−1

ε
uεv · ∇ (φψεψ

∗
ε) − uεv · ∇

(

φ1ψεψ
∗
ε

)

]

=

∫

Ω

∫

V

[

−1

ε
uεφv · ∇(ψεψ

∗
ε) −

1

ε
uεψεψ

∗
εv · ∇xφ

− 1

ε
uεv · ∇y(φ

1ψψ∗)(x,
x

ε
) − uεψεψ

∗
εv · ∇x(φ

1)(x,
x

ε
)

]

,

(41)

since ψ and ψ∗ depend only on y, while φ depends only on x. On the other hand, the second
term in (40) becomes

K2 =
1

ε2

∫

Ω

∫

V

uεφQ
∗
ε(ψεψ

∗
ε) +

1

ε

∫

Ω

∫

V

uεQ
∗
ε(ψεψ

∗
εφ

1) (42)

because, for T = Qε or Q∗
ε, T (φ(x)u(x, v)) = φ(x)T (u(x, v)) (see Remark 3.5 on the proper-

ties of the scattering kernel Qε). Recalling that ψεψ
∗
ε satisfies the adjoint equation

−1

ε
v · ∇(ψεψ

∗
ε) +

1

ε2
Q∗
ε(ψεψ

∗
ε) = 0,

we deduce that, when adding K1 and K2, the first terms in the right hand sides of (41) and
(42) cancel out. Furthermore, in view of the definition of φ1 and of equation (39) satisfied
by θ∗i , we have

−v · ∇y(ψψ
∗φ1) +Q∗(ψψ∗φ1) = ψψ∗v · ∇xφ.

Therefore, when adding K1 and K2, the second and third terms in the right hand side of
(41) cancel out with the second term in the right hand side of (42). Eventually, we get

K1 +K2 = −
∫

Ω

∫

V

uεψεψ
∗
εv · ∇xφ

1 = −
N
∑

i,j=1

∫

Ω

∫

V

uεψεψ
∗
εvj

∂2φ

∂xi∂xj
(x)θ∗i (

x

ε
, v).

Since uε(x, v) converges strongly to u0(x) in L2(Ω× V ) we can pass to the limit as ε goes to
0

−
N
∑

i,j=1

∫

Ω

u0(x)
∂2φ

∂xi∂xj
(x)

(
∫

Y

∫

V

ψψ∗vjθ
∗
i (y, v)dy dv

)

dx =

∫

Ω

F (q)dx.

Multiplying (39) by θj and integrating by parts, we easily obtain that
∫

Y

∫

V

viψψ
∗θjdy dv = −

∫

Y

∫

V

vjψψ
∗θ∗i (y, v)dy dv = −Dij .

This yields, for any smooth function φ(x),

−
∫

Ω

u0(x)
N
∑

i,j=1

Dij
∂2φ

∂xi∂xj
(x)dx =

∫

Ω

φ(x)F (q)(x)dx

which is nothing but the homogenized equation. Since it admits a unique solution u0 in
H1

0 (Ω), all converging subsequences of uε have the same limit, which proves that the entire
sequence uε converges to u0. 2
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6 Correctors and numerical result

In the previous sections, we gave the asymptotic limit of the spectral problem under very
mild smoothness hypothesis for both the cross sections and the solutions. Basically we have
only assumed that the criticality problem was well posed for any ε and that the solution of
the infinite medium problem was bounded. With more smoothness available, one can expect
some stronger convergence properties, namely so-called corrector results. This is a classical
matter in homogenization theory for diffusion equations (see e.g.[28]) where correctors for the
eigenvalues and eigenvectors can be obtained under additional assumptions. The question
of correctors is more delicate in transport theory because it is intimately linked with the
emergence of boundary layers. We shall not dwell on such problems here and we refer to
[8, 7] for more details (a few comments on this issue are given in our discussion on the
numerical application of homogenization at the end of this section). However, staying in the
framework of the two-scale convergence method, we can obtain a partial corrector result for
the eigenvectors. It gives a rate of convergence of the neutron flux at the boundary as well
as a corrector for the deviation of the neutron flux from its velocity average. Unfortunately,
it does not imply any corrector for the eigenvalues.

Theorem 6.1 Assume that the drift flux satisfies J = 0. Let uε be the unique solution of
(21). Let u0 be the unique solution of the homogenized equation (22), and define u1 by

u1(x, y, v) =

N
∑

j=1

∂u0

∂xj
(x)θj(y, v),

where θj is the unique solution of the cell problem (16). Assume that u0(x) is smooth (say
continuous in Ω). Then

lim
ε→0

1

ε

∫

Γ+

|uε|2|v · n|dΓ = 0,

and

lim
ε→0

1

ε
‖
(

uε −
∫

V

uεdv

)

− εwε‖L2(Ω×V ) = 0,

with wε(x, v) =
(

u1(x, xε , v) −
∫

V
u1(x, xε , v)dv

)

.

Remark 6.2 Theorem 6.1 applies for the solutions of the source problem (21). However,
since the eigenvectors of the spectral problem (17) converge strongly in L2(Ω × V ) (up to a
subsequence), it is easily seen that Theorem 6.1 holds true also for these eigenvectors.

Proof. In the course of the proof of Lemma 4.1 we obtained the following energy equality

∫

Ω

∫

V

uεψ
∗
εFε(q)dx dv =

1

2ε

∫

Γ+

|uε|2ψεψ∗
εv · n dv dσ

+
1

2ε2

∫

Ω

∫

V

∫

V

ψ∗
ε (v)σ

ε
∞(v′, v)ψε(v

′)|uε(v) − uε(v
′)|2dv dv′ dx.
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Since uε(x, v) converges strongly to u0(x) in L2(Ω × V ) we have

lim
ε→0

∫

Ω

∫

V

uεψ
∗
εFε(q)dx dv =

∫

Ω

u0F (q)dx =

∫

Ω

D∇u0 · ∇u0dx.

On the other hand, taking ξ = ∇u0 in Lemma 5.5 and using the definition of u1 yields

∫

Ω

D∇u0 · ∇u0dx =
1

2

∫

Ω

∫

Y

∫

V

∫

V ′

σ∞ψ
∗(v)ψ(v)|u1(v) − u1(v′)|2dx dy dv dv′.

By the lower semi-continuity of two-scale convergence applied to ε−1(uε(v) − uε(v
′)), which

two-scale converges to (u1(v) − u1(v′)), we obtain that

lim inf
ε→0

1

ε2

∫

Ω

∫

V

∫

V ′

σε∞ψ
∗
ε (v)ψε(v

′)|uε(v) − uε(v
′)|2dx dv dv′

≥ 1

2

∫

Ω

∫

Y

∫

V

∫

V

σ∞ψ
∗ψ|u1(v) − u1(v′)|2dx dy dv dv′.

Therefore, the energy balance implies that

lim
ε→0

1

ε

∫

Γ+

|uε|2 v · nψψ∗dΓ = 0

and

lim
ε→0

1

ε2

∫

Ω

∫

V

∫

V ′

σε∞ψ
∗
εψε|uε(v) − uε(v

′)|2 =

∫

Ω

∫

Y

∫

V

∫

V ′

σ∞ψ
∗ψ|u1(v) − u1(v′)|2. (43)

Equation (43) is nothing but the strong two-scale convergence of ε−1(uε(v) − uε(v
′)) to

(u1(v) − u1(v′)) (see [2, Theorem 1.8]). Since u1(v) is independent of v′ and u1(v′) of v, it
implies the strong two-scale convergence of ε−1(uε−

∫

V uε) to u1−
∫

V u
1. Since u0 is smooth,

u1(x, xε , v) is a well-defined function in L2(Ω × V ), and as a result of [2, Theorem 1.8] we
obtain the desired convergence. 2

A complete numerical analysis of the homogenization procedure in a realistic setting goes
beyond the scope of this paper; we refer to [9] for such a presentation. Nevertheless we
would like to discuss briefly some numerical examples that illustrate interesting features of
the asymptotic behavior of the eigen-elements of (2). We consider here the two-dimensional
approximation of an idealized nuclear reactor, which is a periodic square composed of n× n
periodicity cells. Such cells, called assemblies, are themselves made of many fuel pins and
control rods immersed in water. More precisely, each cell is a MOX assembly (MOX stands for
a mixture of uranium and plutonium oxides) which is a very heterogeneous type of assembly
(we shall not described them here, and we refer to [9] for more details). Two quantities have
been of interest so far: the first eigenvalue λ1

ε and the corresponding positive eigenvector φε
of (2). Following the usual engineering notation, we define keff = 1/λ1

ε. Table 1 gives the
exact multiplication factor keff for different values of the number n of assemblies, and their
associated diffusion approximation given by (λ∞ + ε2ν1)−1. The error between these values,
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Number of assemblies Reference keff Reconstructed keff error (10−5)
5 × 5 1.28495 1.28416 79

10 × 10 1.29525 1.29513 12
20 × 20 1.29791 1.29790 1

∞ 1.29883

Table 1: Reference and reconstructed keff for a MOX assembly.

as seen in the last column of Table 1, has been given in the usual p.c.m. unit for nuclear
reactors computations (1 p.c.m. is equal to 10−5). As a consequence of our analysis, the rate
of convergence to the diffusion approximation of the exact eigenvalue is expected to be at
least of order 2. A numerical estimate is given by

v =
ln e10

e5

ln 10
5

≃ 2.71,

which is fairly well comparable to the theoretical value of 3 (obtained in [8] for symmetric
cells), all the more since the number of assemblies is small in order not to heavily depend on
the accuracy of the numerical computations (of the order of 10−5 for the eigenvalue).

In Figure 1 are plotted one-dimensional cross sections of the velocity-average of the exact
first eigenvector

∫

V φε(x, v)dv and of its diffusion approximation given by

(
∫

V

ψ∞(
x

ε
, v)dv

)

u1(x),

where u1 is the first eigenvector of the homogenized diffusion equation (13). Let us empha-
size that the shape of the reconstructed flux is extremely close to that of the exact transport
solution (of course, since eigenvectors are defined up to a multiplicative constant, their nor-
malization has been performed so that the difference between both flux is identical at the
boundary of the cross section and at the point of maximal value).

However, whatever the choice of normalization, the error at the boundary of the domain
remains of the order of 5% of the maximal value. This error can not be corrected by adding
a periodic corrector term of order ε, but rather is due to a boundary layer effect. This is
demonstrated by Figure 2 where the periodic corrector term, given by

ε

N
∑

j=1

(
∫

V

θj(
x

ε
, v)dv

)

∂u1

∂xj
(x),

is plotted. Since its contribution is of the order of 0.004 of the flux, whereas the error is of
the order of 0.05, this periodic corrector term is of no help, all the more since it vanishes at

the boundary (using symmetry arguments, one can prove that at the boundary ∂Ω either ∂u1

∂xj
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Figure 1: Reference flux and reconstructed flux in a core composed of 5 × 5 assemblies.
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Figure 2: Periodic corrector for a flux normalized to 1 in a core composed of 5×5 assemblies.
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vanishes owing to the Dirichlet boundary conditions, or θj is skew-symmetric in the sense
that

∫

V
θj(xε , v)dv = 0).

The error between the exact and reconstructed flux is of order ε. It is due to a boundary
layer effect that we now explain. In the homogenization process, the absorbing boundary
condition for the neutron flux is replaced by a boundary Dirichlet condition for the diffusion
equation (vanishing flux on ∂Ω). This amounts to saying that no neutrons either enter or exit
the core asymptotically. However, for a fixed positive ε, this is not the case for the transport
equation (2). Indeed, the absorbing boundary conditions in (2) implies that the incoming
flux vanishes, while the outgoing flux is an unknown, and has no reason to cancel out. This
phenomenon is the so-called leakage at the boundary of the core. Theorem 6.1 indicates that
this leakage is of order smaller than ε1/2, but a finer analysis shows that it is of order ε [8].
In practice, for most of the usual reactors (with about 150 assemblies), the neutron density
at the boundary of the core (i.e. between the core and the reflector) is about 5% to 10% of
the maximal density. Therefore quantitative numerical simulations have to account for this
effect.

The highly heterogeneous structure of the transport density with respect to the velocity
v at the boundary of the core (no neutrons enter, whereas some exit) makes it very difficult
to approximate by diffusion (in essence independent of the velocity). Surprisingly enough,
this difficulty can be overcame in a very satisfactory way. In order to study this leakage, a
boundary layer analysis is performed which allows to understand the anisotropic behavior of
the neutron density at the boundary of the core. Such techniques have already been applied
in the case of homogeneous media (or slowly varying media) [11, 29]. In our situation, the
neutron mean free path is of the same order than the medium heterogeneities. Therefore,
the reactor can not be assumed to be locally homogeneous and a genuine multidimensional
boundary layer analysis has to be done (see [8] in the simplified setting of the even par-
ity transport formulation). This boundary layer can be replaced by a modification of the
Dirichlet boundary condition which becomes a Robin boundary condition for the homoge-
nized diffusion limit (featuring a so-called extrapolation length of order ε, characteristic of
the boundary layer). Introducing this refinement in the homogenized model gives extremely
satisfactory numerical results for the reconstructed flux, as well as for the leading eigenvalue
(for details, see [9]).
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