Ecole Polytechnique, Promotion X2009 Analyse Numérique et Optimisation (MAP431) Contrôle Hors Classement du 12 avril 2011

Sujet proposé par François Alouges

IMPORTANT: Prière d'indiquer votre numéro de groupe de PC sur votre copie.

Problème ($\mathbf{1 4}$ points). Let Ω be a regular bounded connected domain of \mathbb{R}^{N}, and Ω_{1} a regular connected subdomain strictly included in Ω (which means $\left.\bar{\Omega}_{1} \subset \Omega\right)$. In all the problem, $H_{0}^{1}(\Omega)$ is equipped with the scalar product

$$
(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x
$$

and we denote by $\|u\|_{H_{0}^{1}}=\sqrt{(u, u)}$ the associated norm. Let $f \in L^{2}(\Omega)$.
We consider for all $\varepsilon>0$ the problem
Find $u_{\varepsilon} \in H_{0}^{1}(\Omega)$, such that $\forall v \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \nabla u_{\varepsilon} \cdot \nabla v d x+\frac{1}{\varepsilon} \int_{\Omega_{1}} \nabla u_{\varepsilon} \cdot \nabla v d x=\int_{\Omega} f v d x . \tag{1}
\end{equation*}
$$

1. Show that the problem (1) possesses a unique solution.

Assuming that the restriction to $\Omega \backslash \bar{\Omega}_{1}$ (resp. to Ω_{1}) of the solution u_{ε} of (1) belongs to $H^{2}\left(\Omega \backslash \bar{\Omega}_{1}\right)$ (resp. $H^{2}\left(\Omega_{1}\right)$) which boundary value problem does it verify on Ω ?
Show also that u_{ε} is the unique solution to the minimization problem

$$
\min _{u \in H_{0}^{1}(\Omega)} J_{\varepsilon}(u),
$$

where $J_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2 \varepsilon} \int_{\Omega_{1}}|\nabla u|^{2} d x-\int_{\Omega} f u d x$.
2. Show that there exist two constants $C_{1}>0$ et $C_{2}>0$ independent of ε such that

$$
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq C_{1} \text { et } \int_{\Omega_{1}}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq C_{2} \varepsilon .
$$

Let V be the space defined by

$$
V=\left\{u \in H_{0}^{1}(\Omega) \text { such that }\left.u\right|_{\Omega_{1}} \text { is constant }\right\} .
$$

We also consider the problem

$$
\begin{align*}
& \text { Find } \quad u_{0} \in V \text {, such that } \forall v \in V, \\
& \qquad \int_{\Omega} \nabla u_{0} \cdot \nabla v d x=\int_{\Omega} f v d x . \tag{2}
\end{align*}
$$

3. Show that V is a closed subspace of $H_{0}^{1}(\Omega)$ and deduce that the problem (2) has a unique solution.
4. Show that

$$
\begin{equation*}
\forall v \in V, \quad \int_{\Omega} \nabla\left(u_{\varepsilon}-u_{0}\right) \cdot \nabla v d x=0 \tag{3}
\end{equation*}
$$

and deduce that

$$
\left\|u_{\varepsilon}\right\|_{H_{0}^{1}} \geq\left\|u_{0}\right\|_{H_{0}^{1}} .
$$

5. Using (3), show that

$$
\left\|u_{\varepsilon}-u_{0}\right\|_{H_{0}^{1}}^{2}=\inf _{v \in V}\left\|u_{\varepsilon}-v\right\|_{H_{0}^{1}}^{2},
$$

which means that u_{0} is the projection on V of u_{ε} for the norm $H_{0}^{1}(\Omega)$.
6. We denote by V^{\perp} the space orthogonal to V in $H_{0}^{1}(\Omega)$ for the scalar product (\cdot, \cdot). Show that if $v \in V^{\perp}$ is such that $|v|_{V}^{2}=\int_{\Omega_{1}}|\nabla v|^{2} d x=0$ then $v=0$. Deduce that $|\cdot|_{V}$ is a norm on V^{\perp}.
7. Admitting that $|\cdot|_{V}$ defined herebefore is a norm on V^{\perp} which is equivalent to the norm $H_{0}^{1}(\Omega)$, show that there exists $C>0$ independent of ε such that

$$
\left\|u_{\varepsilon}-u_{0}\right\|_{H_{0}^{1}} \leq C \sqrt{\epsilon}
$$

and conclude that u_{ε} converges in $H^{1}(\Omega)$ to u_{0} when ε tends to 0 .

Exercice (6 points). We consider the advection equation posed on $\mathbb{R} \times \mathbb{R}^{+}$

$$
\left[\begin{array}{l}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 \text { for }(x, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{4}\\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

in which the sign of the velocity c is not prescribed. We discretize (4) with the scheme

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+c\left(\theta \frac{u_{j+1}^{n}-u_{j}^{n}}{\Delta x}+(1-\theta) \frac{u_{j}^{n}-u_{j-1}^{n}}{\Delta x}\right)=0
$$

in which Δt and Δx are temporal and spatial steps, $\theta \in[0,1]$ is a parameter which is independent of Δt and Δx, and u_{j}^{n} is an approximation of $u(n \Delta t, j \Delta x)$ for $k \in \mathbb{Z}$ and $n \in \mathbb{N}^{*}$. We assume in the rest of the exercise that $\lambda=c \frac{\Delta t}{\Delta x}$ is constant.

1. Study the L^{2} stability of this scheme.
2. Show a convergence result of this scheme to the advection equation.
