Ecole Polytechnique, Promotion X2009 Analyse Numérique et Optimisation (MAP431) Contrôle Hors Classement du 12 avril 2011

Sujet proposé par François Alouges

IMPORTANT: Prière d'indiquer votre numéro de groupe de PC sur votre copie.

Problème (14 points). Let Ω be a regular bounded connected domain of \mathbb{R}^N , and Ω_1 a regular connected subdomain strictly included in Ω (which means $\overline{\Omega}_1 \subset \Omega$). In all the problem, $H_0^1(\Omega)$ is equipped with the scalar product

$$(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx \,,$$

and we denote by $||u||_{H^1_0} = \sqrt{(u, u)}$ the associated norm. Let $f \in L^2(\Omega)$. We consider for all $\varepsilon > 0$ the problem

Find
$$u_{\varepsilon} \in H_0^1(\Omega)$$
, such that $\forall v \in H_0^1(\Omega)$,

$$\int_{\Omega} \nabla u_{\varepsilon} \cdot \nabla v \, dx + \frac{1}{\varepsilon} \int_{\Omega_1} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \,. \tag{1}$$

1. Show that the problem (1) possesses a unique solution.

Assuming that the restriction to $\Omega \setminus \overline{\Omega}_1$ (resp. to Ω_1) of the solution u_{ε} of (1) belongs to $H^2(\Omega \setminus \overline{\Omega}_1)$ (resp. $H^2(\Omega_1)$) which boundary value problem does it verify on Ω ?

Show also that u_{ε} is the unique solution to the minimization problem

$$\min_{u \in H_0^1(\Omega)} J_{\varepsilon}(u) ,$$

where $J_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{2\varepsilon} \int_{\Omega_1} |\nabla u|^2 dx - \int_{\Omega} f u dx .$

2. Show that there exist two constants $C_1 > 0$ et $C_2 > 0$ independent of ε such that

$$\int_{\Omega} |\nabla u_{\varepsilon}|^2 \, dx \le C_1 \text{ et } \int_{\Omega_1} |\nabla u_{\varepsilon}|^2 \, dx \le C_2 \varepsilon \, .$$

Let V be the space defined by

 $V = \{ u \in H_0^1(\Omega) \text{ such that } u|_{\Omega_1} \text{ is constant} \}.$

We also consider the problem

Find
$$u_0 \in V$$
, such that $\forall v \in V$,

$$\int_{\Omega} \nabla u_0 \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \,. \tag{2}$$

- **3.** Show that V is a closed subspace of $H_0^1(\Omega)$ and deduce that the problem (2) has a unique solution.
- 4. Show that

$$\forall v \in V, \quad \int_{\Omega} \nabla (u_{\varepsilon} - u_0) \cdot \nabla v \, dx = 0, \qquad (3)$$

and deduce that

$$|u_{\varepsilon}||_{H^1_0} \ge ||u_0||_{H^1_0}$$
.

5. Using (3), show that

$$||u_{\varepsilon} - u_0||^2_{H^1_0} = \inf_{v \in V} ||u_{\varepsilon} - v||^2_{H^1_0},$$

which means that u_0 is the projection on V of u_{ε} for the norm $H_0^1(\Omega)$.

- 6. We denote by V^{\perp} the space orthogonal to V in $H_0^1(\Omega)$ for the scalar product (\cdot, \cdot) . Show that if $v \in V^{\perp}$ is such that $|v|_V^2 = \int_{\Omega_1} |\nabla v|^2 dx = 0$ then v = 0. Deduce that $|\cdot|_V$ is a norm on V^{\perp} .
- 7. Admitting that $|\cdot|_V$ defined herebefore is a norm on V^{\perp} which is equivalent to the norm $H_0^1(\Omega)$, show that there exists C > 0 independent of ε such that

$$||u_{\varepsilon} - u_0||_{H^1_0} \le C\sqrt{\epsilon},$$

and conclude that u_{ε} converges in $H^1(\Omega)$ to u_0 when ε tends to 0.

Exercice (6 points). We consider the advection equation posed on $\mathbb{R} \times \mathbb{R}^+$

$$\begin{bmatrix} \frac{\partial u}{\partial t} + c\frac{\partial u}{\partial x} = 0 \text{ for } (x,t) \in \mathbb{R} \times \mathbb{R}^+ \\ u(x,0) = u_0(x) , \end{aligned}$$
(4)

in which the sign of the velocity c is not prescribed. We discretize (4) with the scheme

$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + c \left(\theta \frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x} + (1 - \theta) \frac{u_{j}^{n} - u_{j-1}^{n}}{\Delta x} \right) = 0,$$

in which Δt and Δx are temporal and spatial steps, $\theta \in [0, 1]$ is a parameter which is independent of Δt and Δx , and u_j^n is an approximation of $u(n\Delta t, j\Delta x)$ for $k \in \mathbb{Z}$ and $n \in \mathbb{N}^*$. We assume in the rest of the exercise that $\lambda = c \frac{\Delta t}{\Delta x}$ is constant.

- **1.** Study the L^2 stability of this scheme.
- 2. Show a convergence result of this scheme to the advection equation.