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1 Parametric optimization: 10 points

We consider an elastic membrane with a variable thickness h(x), occupying at rest a plane
domain Ω (a smooth bounded open set of R2). The membrane is clamped on its boundary
and is loaded by a given force f(x) ∈ L2(Ω). Its vertical displacement u(x) is the unique
solution in H1

0 (Ω) of {
−div (h∇u) = f in Ω,
u = 0 on ∂Ω.

(1)

To emphasize its dependence with respect to h the solution of (1) is also denoted by u(h).
The thickness belongs to the following space of admissible designs

Uad =

{
h ∈ L∞(Ω) , hmax ≥ h(x) ≥ hmin > 0 in Ω,

∫
Ω
h(x) dx = h0|Ω|

}
.

The goal is to minimize the compliance

inf
h∈Uad

{
J(h) =

∫
Ω
f u(h) dx

}
. (2)

1. Let k ∈ L∞(Ω) be a given function. We denote by v = 〈u′(h), k〉 the directional
derivative of u(h), solution of (1), in the direction k. Recall the boundary value
problem satisfied by v. In the sequel we will write v = v(h) if we want to emphasize
the dependence of v on h.

2. Let k̃ ∈ L∞(Ω) be another given function. We denote by w = 〈v′(h), k̃〉 the di-
rectional derivative of v(h), solution of the p.d.e. defined in the previous question,
in the direction k̃. Similarly to the first question, we denote by ṽ = 〈u′(h), k̃〉 the
directional derivative of u(h) in the direction k̃.

Determine the boundary value problem satisfied by w (p.d.e. and boundary condi-
tions).

By definition, the function w is also the second order derivative of u(h), namely
w = 〈u′′(h), (k, k̃)〉. Check that w is symmetric with respect to (k, k̃).

3. Compute the first and second order derivatives, 〈J ′(h), k〉 and 〈J ′′(h), (k, k̃)〉, of J(h)
in terms of v and w.

4. Give a formula for 〈J ′′(h), (k, k̃)〉 which does not depend on w and is symmetric in
(k, k̃).

5. Prove that, for any k ∈ L∞(Ω),

〈J ′′(h), (k, k)〉 ≥ 0.

What can be said about possible local minimizers of (2) ?
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2 Geometric optimization: 10 points

We consider a thermal conductivity problem in a bounded smooth domain D ⊂ RN .
Inside the domain D, there is a ”default”, i.e. a smooth subset Ω0 ⊂ D, where some heat
”leakage” takes place. We consider the so-called ”inverse” problem to find the default Ω0

by comparing physical measurements with numerical simulations.
The domain boundary is decomposed in two disjoint parts, ∂D = ΓD ∪ ΓN , such that

a known heat flux g ∈ L2(ΓN ) is imposed on ΓN while the temperature is set to 0 on ΓD.
By a physical experiment we measure the temparature u0 on ΓN corresponding to the true
and unknown default Ω0. The heat leakage is modeled by a constant (normalized to 1)
adsorption in a ”candidate” default Ω. Therefore, our model for numerical computations
is to find the temperature u ∈ H1(D), solution of

−∆u+ χΩu = 0 in D,
u = 0 on ΓD,
∂u
∂n = g on ΓN ,

(3)

where χΩ(x) is the characteristic function of Ω which takes the value 1 inside Ω and 0
outside. For a given measured temperature u0 ∈ L2(ΓN ), the goal is to minimize the
objective function

inf
Ω⊂D

{
J(Ω) =

1

2

∫
ΓN

|u− u0|2 ds
}
, (4)

where u depends on Ω through equation (3). The hope is to find a u for which the
objective function (4) vanishes and expect that the corresponding Ω is the true location
of the unknown default Ω0. We use Hadamard’s method of shape variations to compute
derivatives.

1. Write the Lagrangian L(Ω, v, q) corresponding to (4).

2. Deduce the variational formulation of the adjoint problem. Write explicitly the
boundary value problem for the adjoint p (p.d.e. and boundary conditions).

3. Compute (formally) the shape derivative of (4).

4. Prove that, if g ≥ 0, then the solution of (3) satisfies u ≥ 0. Hint: multiply the
equation by u− = min(u, 0) which (assumably) belongs to H1(D) and has a gradient
given by

∇u− =

{
0 if u ≥ 0,
∇u if u ≤ 0.

5. We assume that g ≥ 0. Deduce that, if the predicted temperature u satisfies u ≥ u0

on ΓN , then the objective function will decrease if Ω is enlarged (and the converse
if instead u ≤ u0 on ΓN ).
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