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1 Parametric optimization: 10 points

We consider an elastic membrane with a variable thickness h(x), occupying at rest a plane
domain 2 (a smooth bounded open set of R?). The membrane is clamped on its boundary
and is loaded by a given force f(z) € L?(Q). Its vertical displacement u(z) is the unique
solution in H{ () of

{ —div (hVu) = f in Q, (1)

u=0 on 0.

To emphasize its dependence with respect to h the solution of (1) is also denoted by u(h).
The thickness belongs to the following space of admissible designs

Ung = {h € L), hmas > h(z) > hpmin > 0 in Q, / h(z)dz = hoym} .
Q

The goal is to minimize the compliance

inf {J(h): /Q fu(h)da:}. 2)

helyq

1. Let k € L*(f2) be a given function. We denote by v = (u/(h), k) the directional
derivative of w(h), solution of (1), in the direction k. Recall the boundary value
problem satisfied by v. In the sequel we will write v = v(h) if we want to emphasize
the dependence of v on h.

2. Let k € L®(Q) be another given function. We denote by w = (v/(h), k) the di-
rectional derivative of v(h), solution of the p.d.e. defined in the previous question,

in the direction k. Similarly to the first question, we denote by o = (u'(h),k) the
directional derivative of u(h) in the direction k.

Determine the boundary value problem satisfied by w (p.d.e. and boundary condi-
tions).

By definition, the function w is also the second order derivative of u(h), namely
w = (u"(h), (k,k)). Check that w is symmetric with respect to (k,k).

3. Compute the first and second order derivatives, (J'(h), k) and (J”(h), (k, k)), of J(h)
in terms of v and w.

4. Give a formula for (J”(h), (k, k)) which does not depend on w and is symmetric in
(k, k).

5. Prove that, for any k € L>(Q),
(J"(h), (k,k)) > 0.

What can be said about possible local minimizers of (2) ?



2 Geometric optimization: 10 points

We consider a thermal conductivity problem in a bounded smooth domain D C R¥.
Inside the domain D, there is a ”default”, i.e. a smooth subset ()9 C D, where some heat
"leakage” takes place. We consider the so-called ”inverse” problem to find the default
by comparing physical measurements with numerical simulations.

The domain boundary is decomposed in two disjoint parts, 0D = I'p U 'y, such that
a known heat flux g € L?(I'y) is imposed on I'y while the temperature is set to 0 on I'p.
By a physical experiment we measure the temparature ug on I'y corresponding to the true
and unknown default €y. The heat leakage is modeled by a constant (normalized to 1)
adsorption in a ”candidate” default 2. Therefore, our model for numerical computations
is to find the temperature u € H'(D), solution of

—Au+xou=0 in D,

u=0 on I'p, (3)
Gu—yg on I'y,

where xq(z) is the characteristic function of € which takes the value 1 inside 2 and 0
outside. For a given measured temperature ug € L?(I'y), the goal is to minimize the

objective function
1 2
inf Q) == — 4
QHCID{J( ) 2/FN fu = uol ds}’ )

where u depends on Q) through equation (3). The hope is to find a w for which the
objective function (4) vanishes and expect that the corresponding € is the true location
of the unknown default €23. We use Hadamard’s method of shape variations to compute
derivatives.

1. Write the Lagrangian £(£2,v,q) corresponding to (4).

2. Deduce the variational formulation of the adjoint problem. Write explicitly the
boundary value problem for the adjoint p (p.d.e. and boundary conditions).

3. Compute (formally) the shape derivative of (4).

4. Prove that, if g > 0, then the solution of (3) satisfies v > 0. Hint: multiply the
equation by u~ = min(u, 0) which (assumably) belongs to H*(D) and has a gradient

given by
_ 0 if u >0,
Vi = { Vu ifu<0.

5. We assume that g > 0. Deduce that, if the predicted temperature u satisfies u > g
on I'y, then the objective function will decrease if (2 is enlarged (and the converse
if instead u < up on I'y).



