Continuous Optimization
 Introduction à l'optimisation continue
 Contrôle
 (14 janvier 2020)

Exercise I: conjugate function and "prox" operator

We consider the function $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}, d \geq 1$, defined by

$$
f(x)=\left\{\begin{array}{l}
-\ln (1-\|x\|) \quad \text { if }\|x\|<1 \\
+\infty \text { else. }
\end{array}\right.
$$

1. Show that f is convex, lower-semicontinuous (lsc).

First, f is continuous in $\{\|x\|<1\}$, and goes to $+\infty$ when $\|x\| \rightarrow 1$, so it is lowersemicontinuous. Then, given x, y and $t \in] 0,1[$ and assuming $\|x\|,\|y\|<1$ (otherwise $t f(x)+(1-t) f(y)=+\infty$ and there is nothing to prove), one has:

$$
\begin{aligned}
& -\|t x+(1-t) y\| \geq-t\|x\|-(1-t)\|y\| \quad \text { so that } \\
& f(t x+(1-t) y)=-\ln (-\|t x+(1-t) y\|) \leq-\ln (-t\|x\|-(1-t)\|y\|)
\end{aligned}
$$

where we use that $\|\cdot\|$ is convex and $-\ln$ is decreasing. Then, as $-\ln$ is convex,

$$
-\ln (-t\|x\|-(1-t)\|y\|) \leq-t \ln \|x\|-(1-t) \ln \|y\|=t f(x)+(1-t) f(y) .
$$

2. Show that $f(x) \geq\|x\|$. Deduce that $\partial f(0) \supseteq B(0,1)=\{y:\|y\| \leq 1\}$.

One has $-\ln (1+s) \geq-\ln 1-s=-s$ by convexity of $-\ln$. Hence $f(x) \geq\|x\|$. In particular $f(x) \geq y \cdot x$ for any y with $\|y\| \leq 1$, as $f(0)=0$ this shows that $\partial f(0) \supseteq B(0,1)$.
3. Show that for $x \neq 0,\|x\|<1$,

$$
\nabla f(x)=\frac{x}{\|x\|(1-\|x\|)} .
$$

Deduce that for any p with $\|p\|>1$, one can compute $x \in B(0,1)$ with $\nabla f(x)=p$. Deduce an expression for $f^{*}(p)$ (recall Legendre-Fenchel's identity). What is $f^{*}(p)$ for $\|p\| \leq 1$?

The formula is a simple differentiation, as f is C^{∞} in $B(0,1) \backslash\{0\}$. Then, for $\|p\|>1$, if $p=\nabla f(x)$ one sees that x and p must be aligned and taking the norms, $\|p\|=1 /(1-\|x\|)$ so that $\|x\|=1-1 /\|p\| \in(0,1)$ and $x=(1-1 /\|p\|) p /\|p\|$.

Using that $f(x)+f^{*}(p)=\langle p, x\rangle$ for $p=\nabla f(x)$, we deduce that

$$
f^{*}(p)=x \cdot p-f(x)=\|p\|-1+\ln (1-(1-1 /\|p\|))=\|p\|-\ln \|p\|-1 .
$$

For $\|p\| \leq 1$, on the other hand, we have $p \in \partial f(0)$ so that $f^{*}(p)=0 \cdot p-f(0)=0$.
4. We want to compute $x=\operatorname{prox}_{\tau f}(\bar{x})$ for a given $\bar{x} \in \mathbb{R}^{d}$ and $\tau>0$. Write the equation satisfied by x and show that (i) x and \bar{x} are colinear; (ii) $x=0$ if $\|\bar{x}\| \leq \tau$; (iii) if $\|\bar{x}\|>\tau$, then $\rho=\|x\|$ satisfies a second order equation which has two positive solutions. Using then that $\rho<1$ and $\rho \leq\|\bar{x}\|$, give the right answer.

The problem to solve is

$$
\min _{x} \frac{\|x-\bar{x}\|^{2}}{2 \tau}+f(x)
$$

and is solved by a unique point which satisfies

$$
x-\bar{x}+\tau \partial f(x) \ni 0 .
$$

It means, either $\|\bar{x}\| \leq \tau$ and $x=0$ is a solution, or, for $\|\bar{x}\|>\tau, x \neq 0,\|x\|<1$ (as $f(x)$ is finite) and

$$
x+\frac{\tau x}{\|x\|(1-\|x\|)}=\bar{x} \Leftrightarrow(\|x\|(1-\|x\|)+\tau) x=\|x\|(1-\|x\|) \bar{x} .
$$

In particular we see that $x=\rho \bar{x} /\|\bar{x}\|$ for some $\rho>0$, and taking the norm we have

$$
\|x\|(1-\|x\|)+\tau=(1-\|x\|)\|\bar{x}\| .
$$

Denoting $\bar{\rho}:=\|\bar{x}\|>\tau, \rho \in(0,1)$ must solve

$$
\rho^{2}-(1+\bar{\rho}) \rho+\rho-\tau=0
$$

which has two solutions

$$
\rho^{+}=\frac{1+\bar{\rho}+\sqrt{(1-\bar{\rho})^{2}+4 \tau}}{2}, \quad \rho^{-}=\frac{1+\bar{\rho}-\sqrt{(1-\bar{\rho})^{2}+4 \tau}}{2}
$$

with $\rho^{+}+\rho^{-}=1+\bar{\rho}$ and $\rho^{+} \rho^{-}=\bar{\rho}-\tau>0$. Observe that $\rho^{+}>(1+\bar{\rho}+|1-\bar{\rho}|) / 2$ so that in case $\bar{\rho} \geq 1, \rho^{+}>\bar{\rho} \geq 1$ (hence $\rho^{-}=1+\bar{\rho}-\rho^{+}<1$), and in case $\bar{\rho}<1, \rho^{+}>1$ (hence $\rho^{-}<\bar{\rho}<1$). Hence the right solution (giving the norm of x) is ρ^{-}, and one can write

$$
x=\frac{1+\|\bar{x}\|-\sqrt{(1-\|\bar{x}\|)^{2}+4 \tau}}{2} \bar{x} .
$$

Exercise II: The "Extragradient" method

Let X be a Hilbert space and A a maximal-monotone operator. We assume that A is defined everywhere in X and L-Lipschitz ${ }^{1}$ (in particular, it implies that $A x$ is just one point, denoted $A x$, for any x).

One wants to find $x^{*} \in X$ with $A x^{*}=0$. Let $S=\{x \in X: A x=0\}$ and assume that $S \neq \emptyset$.

[^0]1. We first consider the elementary algorithm $x^{k+1}=x^{k}-\tau A x^{k}$, for $\tau>0$, and $x^{0} \in X$ given. Recall from the lecture notes the standard conditions on A and τ which guarantee that the sequence $\left(x^{k}\right)_{k \geq 0}$ (weakly) converges to a point $x^{*} \in S$.

This is in the lecture notes. One needs A to be co-coercive: $\langle A x-A y, x-y\rangle \geq$ $\mu\|A x-A y\|^{2}$, and that $0<\tau<2 \mu$.
2. In general it is not clear that the algorithm in $\mathbf{1}$. will converge. Consider for instance $X=\mathbb{R}^{2}$,

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Show that A satisfies the assumptions at the beginning of the exercise. Evaluate $\left\|x^{k+1}\right\|$ in function of x^{k}. Deduce that the algorithm always diverges if $x^{0} \neq 0$.
A is Lipschitz (obvious), monotone since $\langle A x-A y, x-y\rangle=\langle A(x-y), x-y\rangle=0$ for any x, y, maximal: if (z, p) are such that $\langle A x-p, x-z\rangle \geq 0$ for all x, for $x=z+t y$, $y \in X, t>0$, one finds that $0 \leq\langle A z+t A y-p, t y\rangle=t\langle A z-p, y\rangle$ so that $\langle A z-p, y\rangle \geq$ 0 for all y (we have used $\langle t A y, t y\rangle=0$). It implies that $p=A z$.

Then, given $(x, y) \in \mathbb{R}^{2}$, we compute

$$
\left\|(I-\tau A)\binom{x}{y}\right\|^{2}=\left\|\begin{array}{l}
x-\tau y \\
y+\tau x
\end{array}\right\|^{2}=(x-\tau y)^{2}+(y+\tau x)^{2}=\left(1+\tau^{2}\right)\left(x^{2}+y^{2}\right) .
$$

Thus, $\left\|x^{k}\right\|=\sqrt{1+\tau^{2}}{ }^{k}\left\|x^{0}\right\|$ which shows the claim.
The extragradient algorithm (Korpelevich, 1976). One Considers the following twosteps algorithm, known as the "extra-gradient" method (as it computes an evaluation of A at an extrapolated point). Given $x^{0} \in X, \tau>0$, one lets for $k \geq 0$:

$$
\left\{\begin{array}{l}
y^{k}=x^{k}-\tau A x^{k} \\
x^{k+1}=x^{k}-\tau A y^{k} .
\end{array}\right.
$$

One wants to show that with this correction, the algorithm converges for τ well chosen.
3. We consider the setting of question 2.. Compute the matrix $B:=I-\tau A(I-\tau A)$. Evaluate again $\left\|x^{k+1}\right\|$, and show that if $\tau<1$ the algorithm converges.

We have

$$
B=I-\tau A(I-\tau A)=I-\left(\begin{array}{cc}
0 & \tau \\
-\tau & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -\tau \\
\tau & 1
\end{array}\right)=I-\left(\begin{array}{cc}
\tau^{2} & \tau \\
-\tau & \tau^{2}
\end{array}\right)=\left(\begin{array}{cc}
1-\tau^{2} & -\tau \\
\tau & 1-\tau^{2}
\end{array}\right)
$$

One has $x^{k+1}=x^{k}-\tau A y^{k}=x^{k}-\tau A\left(x^{k}-\tau A x^{k}\right)=(I-\tau A(I-\tau A)) x^{k}=B x^{k}$. Given $(x, y) \in \mathbb{R}^{2},\left\|B(x, y)^{T}\right\|^{2}=\left(\left(1-\tau^{2}\right) x-\tau y\right)^{2}+\left(\tau x+\left(1-\tau^{2}\right) y\right)^{2}=\left(\left(1-\tau^{2}\right)^{2}+\tau^{2}\right)\left\|(x, y)^{T}\right\|^{2}$. Using that $\left(\left(1-\tau^{2}\right)^{2}+\tau^{2}\right)=1-\tau^{2}+\tau^{4}=1-\tau^{2}\left(1-\tau^{2}\right)$ we find that if $0<\tau<1$,
as $k \rightarrow \infty$ (with a linear rate) so that the algorithm converges.
4. We now return to the general case where A is a maximal monotone operator, L Lipschitz, in a Hilbert space X. Show that if $0<\tau L<1$ and if x is a fixed point of the algorithm (meaning that if $x^{k}=x$, then $x^{k+1}=x$ as well), then $x \in S$.

We have, letting $y=x-\tau A x$, that $x-\tau A y=x$, that is $A y=0(y \in S)$. Then, $\|A x\|=\|A x-A y\| \leq L\|x-y\|$ so that $\|\tau A x\| \leq \tau L\|x-y\|=\tau L\|\tau A x\|$. Since $0<\tau L<1$ this is possible only if $A x=0$, that is $x \in S$.
5. Let $x^{*} \in S$. Using that A is monotone, first show (using the second line of the algorithm) that

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|^{2} & \leq\left\|x^{k}-x^{*}\right\|^{2}-2 \tau\left\langle A y^{k}, x^{k}-y^{k}\right\rangle+\tau^{2}\left\|A y^{k}\right\|^{2} \\
& =\left\|x^{k}-x^{*}\right\|^{2}-2\left\langle x^{k}-x^{k+1}, x^{k}-y^{k}\right\rangle+\tau^{2}\left\|x^{k}-x^{k+1}\right\|^{2}
\end{aligned}
$$

One has

$$
\left\|x^{k+1}-x^{*}\right\|^{2}=\left\|x^{k}-x^{*}\right\|^{2}-2 \tau\left\langle A y^{k}, x^{k}-x^{*}\right\rangle+\tau^{2}\left\|A y^{k}\right\|^{2}
$$

We write (recall that $A x^{*}=0$)

$$
\begin{aligned}
& \left\langle A y^{k}, x^{k}-x^{*}\right\rangle=\left\langle A y^{k}, x^{k}-y^{k}\right\rangle+\left\langle A y^{k}, y^{k}-x^{*}\right\rangle \\
& =\left\langle A y^{k}, x^{k}-y^{k}\right\rangle+\left\langle A y^{k}-A x^{*}, y^{k}-x^{*}\right\rangle \geq\left\langle A y^{k}, x^{k}-y^{k}\right\rangle
\end{aligned}
$$

Hence,

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-2 \tau\left\langle A y^{k}, x^{k}-y^{k}\right\rangle+\tau^{2}\left\|A y^{k}\right\|^{2}
$$

We conclude using again that $\tau A y^{k}=x^{k}-x^{k+1}$.
6. Deduce, using now that A is L-Lipschitz, that

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\left(1-\tau^{2} L^{2}\right)\left\|y^{k}-x^{k}\right\|^{2}
$$

One has

$$
\begin{aligned}
& \left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-2\left\langle x^{k}-x^{k+1}, x^{k}-y^{k}\right\rangle+\left\|x^{k+1}-x^{k}\right\|^{2} \\
& =\left\|x^{k}-x^{*}\right\|^{2}+\left\|x^{k+1}-y^{k}\right\|^{2}-\left\|x^{k}-y^{k}\right\|^{2} \\
& =\left\|x^{k}-x^{*}\right\|^{2}+\tau^{2}\left\|A y^{k}-A x^{k}\right\|^{2}-\left\|x^{k}-y^{k}\right\|^{2} \\
& \quad \leq\left\|x^{k}-x^{*}\right\|^{2}+\tau^{2} L^{2}\left\|y^{k}-x^{k}\right\|^{2}-\left\|x^{k}-y^{k}\right\|^{2}
\end{aligned}
$$

7. We now assume $0<\tau<1 / L$. What can we say of the sequence $\left(x^{k}\right)_{k \geq 0}$? Of the sequence $\left(\left\|x^{k}-x^{*}\right\|\right)_{k \geq 0}$ for $x^{*} \in S$? Of the sequence $\left(x^{k}-y^{k}\right)_{k \geq 0}$?

The first is bounded (and hence has weakly converging subsequences), the second is decreasing (and hence has a limit), the last must go to zero, as the series

$$
\left(1-\tau^{2} L^{2}\right) \sum_{k=0}^{n}\left\|y^{k}-x^{k}\right\|^{2}+\left\|x^{n+1}-x^{*}\right\|^{2} \leq\left\|x^{0}-x^{*}\right\|^{2}
$$

is bounded.
8. As in the lecture notes, we denote $m\left(x^{*}\right)=\lim _{k \rightarrow \infty}\left\|x^{k}-x^{*}\right\|$, for $x^{*} \in S$. Let \bar{x} be the (weak) limit of a subsequence $\left(x^{k_{l}}\right)_{l}$. Show that $A x^{k_{l}} \rightarrow 0$ (strongly). Using that A is maximal-monotone, deduce that $A \bar{x}=0$, that is $\bar{x} \in S$. Deduce from Opial's lemma that x^{k} converges (weakly in X) to \bar{x}.

As we saw, $\left(x^{k}\right)$ is bounded and therefore has weakly converging subsequences. One has here in addition that $A x^{k_{l}}=\left(x^{k_{l}}-y^{k_{l}}\right) / \tau \rightarrow 0$ in norm (strongly). If $z \in X$ by monotonicity one has $0 \leq\left\langle A z-A x^{k_{l}}, z-x^{k_{l}}\right\rangle \rightarrow\langle A z, z-\bar{x}\rangle$. We deduce that for all $z \in X,\langle A z, z-\bar{x}\rangle \geq 0$ and this shows that $A \bar{x}=0$ (precisely that $0 \in A \bar{x}$, but as we know already $A \bar{x}$ is a set with exactly one element). In particular $\left\|x^{k_{l}}-\bar{x}\right\| \rightarrow m(\bar{x})$.

Now, Opial's lemma shows that $m(\bar{x})<m\left(x^{*}\right)$ for all $x^{*} \in S \backslash\{\bar{x}\}$. This means that if $\bar{x}^{\prime} \in S$ is the limit of any other converging subsequence of $\left(x^{k}\right)$, we must have $\bar{x}^{\prime}=\bar{x}$. Hence $x^{k} \rightharpoonup \bar{x}$.

Exercise III: A nonlinear proximal point algorithm

We consider X a Hilbert space and a strictly convex lower-semicontinuous (lsc) function $\psi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ such that the interior of $\operatorname{dom} \psi$, denoted D, is not empty, $\bar{D}=\operatorname{dom} \psi$, $\psi \in C^{1}(D) \cap C^{0}(\bar{D})$, and $\partial \psi(x)=\emptyset$ for all $x \notin D$. In other words, $\partial \psi(x)$ is either \emptyset (if $x \notin D$), or a singleton $\{\nabla \psi(x)\}$ (if $x \in D$). We define the "Bregman distance associated to $\psi^{\prime \prime}$, denoted $D_{\psi}(x, y)$, as, for $y \in D$ and $x \in X$,

$$
D_{\psi}(x, y):=\psi(x)-\psi(y)-\langle\nabla \psi(y), x-y\rangle .
$$

1. Show that $D_{\psi}(x, y) \geq 0$, and that $D_{\psi}(x, y)=0 \Rightarrow y=x$. What further estimate can we write if in addition ψ is strongly convex? Why is D_{ψ} not a distance in the classical sense?
$D_{\psi}(x, y) \geq 0$ because ψ is convex. If $D_{\psi}(x, y)=0$, then for $t \in[0,1], \psi(t x+(1-t) y) \leq$ $t \psi(x)+(1-t) \psi(y)=\psi(y)+t\langle\nabla \psi(y), x-y\rangle \leq \psi(y+t(x-y))$ Hence ψ is affine on $[x, y]$, which is a contradiction to ψ being strictly convex unless $x=y$. Finally, if ψ is γ-convex one has for x, y :

$$
\psi(x) \geq \psi(y)+\langle\nabla \psi(y), x-y\rangle+\frac{\gamma}{2}\|x-y\|^{2}
$$

so that $D_{\psi}(x, y) \geq(\gamma / 2)\|x-y\|^{2}$.
On the other hand there is no reason to have $D_{\psi}(x, y)=D_{\psi}(y, x)$ in general.
2. Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex, lsc. Assume $\lim _{|x| \rightarrow \infty} f(x)=+\infty$. Let $\tau>0$. Let $\bar{x} \in D$. Show that there exist a minimizer \hat{x} of

$$
\min _{x} \frac{1}{\tau} D_{\psi}(x, \bar{x})+f(x) .
$$

Show that then $\hat{x} \in D$ and the "Euler-Lagrange" equation (or Fermat's rule),

$$
\begin{equation*}
\nabla \psi(\hat{x})-\nabla \psi(\bar{x})+\tau \partial f(\hat{x}) \ni 0 \tag{EL}
\end{equation*}
$$

The function in the minimization problem is convex, lsc, and goes to infinity when $|x| \rightarrow \infty$. Hence it is also weakly convex and has a minimizer. (Unique as ψ is strictly convex.) Moreover, as ψ is C^{1} in an open set, one has $\partial\left(D_{\psi}(\cdot, \bar{x}) / \tau+f\right)=\partial D_{\psi}(\cdot, \bar{x}) / \tau+$ $\partial f=\nabla D_{\psi}(\cdot, \bar{x}) / \tau+\partial f$. Hence one derives the equation by observing that one should have $0 \in \partial\left(D_{\psi}(\cdot, \bar{x}) / \tau+f\right)(\hat{x})$. In particular $x \in D$ otherwise the subgradient would be empty.
3. Deduce from $(E L)$ and the definition of a subgradient the "three point relationship": for any $x \in X$,

$$
\begin{equation*}
\frac{1}{\tau} D_{\psi}(x, \bar{x})+f(x) \geq \frac{1}{\tau} D_{\psi}(\hat{x}, \bar{x})+f(\hat{x})+\frac{1}{\tau} D_{\psi}(x, \hat{x}) . \tag{3P}
\end{equation*}
$$

We have

$$
-\nabla \psi(\hat{x})+\nabla \psi(\bar{x}) \in \tau \partial f(\hat{x})
$$

so that for any x,

$$
f(x) \geq f(\hat{x})+\frac{1}{\tau}\langle\nabla \psi(\bar{x})-\nabla \psi(\hat{x}), x-\hat{x}\rangle
$$

Hence

$$
\begin{gathered}
f(x)+\frac{1}{\tau} D_{\psi}(x, \bar{x}) \geq f(\hat{x})+\frac{1}{\tau}(\langle\nabla \psi(\bar{x})-\nabla \psi(\hat{x}), x-\hat{x}\rangle+\psi(x)-\psi(\bar{x})-\langle\nabla \psi(\bar{x}), x-\bar{x}\rangle) \\
=f(\hat{x})+\frac{1}{\tau}(-\langle\nabla \psi(\hat{x}), x-\hat{x}\rangle+\psi(x)-\psi(\bar{x})-\langle\nabla \psi(\bar{x}), \hat{x}-\bar{x}\rangle) \\
=f(\hat{x})+\frac{1}{\tau}(\psi(x)-\psi(\hat{x})-\langle\nabla \psi(\hat{x}), x-\hat{x}\rangle+\psi(\hat{x})-\psi(\bar{x})-\langle\nabla \psi(\bar{x}), \hat{x}-\bar{x}\rangle)
\end{gathered}
$$

which shows $(3 P)$.
4. We consider the "nonlinear proximal point" algorithm: $x^{0} \in D$,

$$
x^{k+1}=\arg \min _{x} \frac{1}{\tau} D_{\psi}\left(x, x^{k}\right)+f(x)
$$

Using $(3 P)$, show that $f\left(x^{k}\right)$ is non-increasing. Then, show that for any $x \in \bar{D}$,

$$
f\left(x^{k}\right)-f(x) \leq \frac{1}{k \tau} D_{\psi}\left(x, x^{0}\right)
$$

If we choose $x=\bar{x}=x^{k}$ and then $\hat{x}=x^{k+1}$ in ($3 P$) we find

$$
f\left(x^{k+1}\right)+\frac{1}{\tau}\left(D_{\psi}\left(x^{k+1}, x^{k}\right)+D_{\psi}\left(x^{k}, x^{k+1}\right)\right) \leq f\left(x^{k}\right)
$$

so that $f\left(x^{k}\right)$ must be nonincreasing. (Moreover if $f\left(x^{k}\right)=f\left(x^{k+1}\right)$ then $x^{k+1}=x^{k}$, it is the minimizer of f in D, as then $\left.0 \in \partial f\left(x^{k}\right)\right)$.

If we choose $\bar{x}=x^{k}, x$ arbitrary and then $\hat{x}=x^{k+1}$ in $(3 P)$ we find

$$
f\left(x^{k+1}\right)-f(x)+\frac{1}{\tau}\left(D_{\psi}\left(x^{k+1}, x^{k}\right)+D_{\psi}\left(x, x^{k+1}\right)\right) \leq \frac{1}{\tau} D_{\psi}\left(x, x^{k}\right)
$$

Summing this for $k=0, \ldots, n-1$ and using that $f\left(x^{k}\right)$ is decreasing gives

$$
n\left(f\left(x^{n}\right)-f(x)\right)+\frac{1}{\tau} D_{\psi}\left(x, x^{n}\right) \leq \frac{1}{\tau} D_{\psi}\left(x, x^{0}\right)
$$

which yields the requested inequality.
5. Assume $x^{k} \rightarrow x^{*}$ weakly: what is x^{*} ?

One has $f\left(x^{*}\right) \leq \liminf _{k} f\left(x^{k}\right)$ as f is convex, lsc (hence also weakly lsc). Hence $f\left(x^{*}\right)-f(x) \leq 0$ for any $x \in \bar{D}$. Moreover as $x^{k} \in D, x^{*} \in \bar{D}$ (again we use that a closed convex set is weakly closed). Hence x^{*} is a minimizer of f in D.
6. We assume in addition that there exists $\gamma>0$ such that $h=f-\gamma \psi$ is convex. Show (using h) that ($3 P$) can be improved into:

$$
\frac{1}{\tau} D_{\psi}(x, \bar{x})+f(x) \geq \frac{1}{\tau} D_{\psi}(\hat{x}, \bar{x})+f(\hat{x})+\frac{1+\gamma \tau}{\tau} D_{\psi}(x, \hat{x})
$$

Hint: write that $f(x)=h(x)+\gamma \psi(x)=(h(x)+\gamma[\psi(\bar{x})+\langle\nabla \psi(\bar{x}), x-\bar{x}\rangle])+\gamma D_{\psi}(x, \bar{x})$ and use $(3 P)$ after having added $(1 / \tau) D_{\psi}(x, \bar{x})$; or write $(E L)$ using that $\partial f(\hat{x})=$ $\partial h(\hat{x})+\gamma \nabla \psi(\hat{x})$ and work as in the proof of $(3 P)$ in $\mathbf{3}$..

Let us use that $f(x)=h(x)+\gamma \psi(x)=(h(x)+\gamma[\psi(\bar{x})+\langle\nabla \psi(\bar{x}), x-\bar{x}\rangle])$ and denote $h^{\prime}(x):=h(x)+\gamma[\psi(\bar{x})+\langle\nabla \psi(\bar{x}), x-\bar{x}\rangle]$. Then from (3P) we have

$$
\begin{aligned}
\frac{1}{\tau} D_{\psi}(x, \bar{x})+f(x)=\frac{1+\tau \gamma}{\tau} D_{\psi}(x, \bar{x})+h^{\prime}(x) \geq & \frac{1+\tau \gamma}{\tau} D_{\psi}(\hat{x}, \bar{x})+h^{\prime}(\hat{x})+\frac{1+\tau \gamma}{\tau} D_{\psi}(x, \hat{x}) \\
& =\frac{1}{\tau} D_{\psi}(\hat{x}, \bar{x})+f(\hat{x})+\frac{1+\tau \gamma}{\tau} D_{\psi}(x, \hat{x})
\end{aligned}
$$

7. Deduce the "linear" rate of convergence for the algorithm:

$$
f\left(x^{k+1}\right)-f\left(x^{*}\right) \leq \frac{1}{(1+\gamma \tau)^{k}} D_{\psi}\left(x^{*}, x^{0}\right)
$$

where x^{*} is a minimizer of f in \bar{D}.

Now we have

$$
f\left(x^{k+1}\right)-f(x)+\frac{1}{\tau} D_{\psi}\left(x^{k+1}, x^{k}\right)+\frac{1+\tau \gamma}{\tau} D_{\psi}\left(x, x^{k+1}\right) \leq \frac{1}{\tau} D_{\psi}\left(x, x^{k}\right) .
$$

Choosing $x=x^{*}$ a minimizer of f over \bar{D}, we have that $f\left(x^{k+1}\right)-f\left(x^{*}\right) \geq 0$ so that

$$
\frac{1+\tau \gamma}{\tau} D_{\psi}\left(x^{*}, x^{k+1}\right) \leq \frac{1}{\tau} D_{\psi}\left(x^{*}, x^{k}\right) .
$$

It follows that $D_{\psi}\left(x^{*}, x^{k}\right) \leq 1 /(1+\tau \gamma)^{k} D_{\psi}\left(x^{*}, x^{0}\right)$ and therefore also $f\left(x^{k+1}\right)-f\left(x^{*}\right)$ (using the inequality once more).

Exercise IV: convex homogeneous functions

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}(d \geq 1)$ be convex, lsc, and positively 2 -homogeneous: for any $x \in \mathbb{R}^{d}, t>0, f(t x)=t^{2} f(x)$. We want to show that \sqrt{f} is also convex (1-homogeneous).

1. Show that f^{*} (the convex conjugate) is positively 2-homogeneous. (Hint: evaluate $f^{*}(t y) / t^{2}$ for $t>0$.)

$$
\frac{1}{t^{2}} f^{*}(t y)=\sup _{x} \frac{1}{t} y \cdot x-\frac{1}{t^{2}} f(x)=\sup _{x} y \cdot \frac{x}{t}-f\left(\frac{x}{t}\right)=f^{*}(y) .
$$

2. Let $h(x)=\sup _{f^{*}(y) \leq 1} y \cdot x$ be the conjugate of the characteristic function $\delta_{\left\{f^{*}(\cdot) \leq 1\right\}}$. Show that h is convex, one-homogeneous, non-negative.
h is trivially convex lsc as a sup of affine functions (or as the conjugate of $\delta_{\left\{f^{*}(\cdot) \leq 1\right\}}$). Also, for $t>0, h(t x)=\sup \ldots y \cdot t x=t \sup \ldots y \cdot x=t h(x)$ is trivial. As $f^{*}(0) \leq 0\left(f^{*}\right.$ is lsc, $f^{*}(0) \leq \liminf _{t \rightarrow 0} f^{*}(t x)=0$ for any $\left.x \in \operatorname{dom} f^{*}\right), 0 \in\left\{f^{*}(\cdot) \leq 1\right\}$ and $h \geq 0$.
3. Show that $f=h^{2} / 4$, conclude.

$$
f(x)=\sup _{y} x \cdot y-f^{*}(y)=\sup _{f^{*}(\eta)=1, t>0, y=t \eta} t x \cdot \eta-t^{2}=\sup _{t>0} t h(x)-t^{2}=\frac{h(x)^{2}}{4} .
$$

Hence $\sqrt{f}=h / 2$ is a convex function.

[^0]: ${ }^{1}$ A Lipschitz maximal monotone must be defined everywhere, thanks to Kirszbraun-Valentine's theorem.

