Continuous Optimization Introduction à l'optimisation continue Contrôle (14 janvier 2020)

Exercise I: conjugate function and "prox" operator

We consider the function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}, d \ge 1$, defined by

$$f(x) = \begin{cases} -\ln(1 - \|x\|) & \text{if } \|x\| < 1 \\ +\infty \text{ else.} \end{cases}$$

1. Show that f is convex, lower-semicontinuous (lsc).

First, f is continuous in $\{||x|| < 1\}$, and goes to $+\infty$ when $||x|| \to 1$, so it is lowersemicontinuous. Then, given x, y and $t \in]0, 1[$ and assuming ||x||, ||y|| < 1 (otherwise $tf(x) + (1-t)f(y) = +\infty$ and there is nothing to prove), one has:

$$-\|tx + (1-t)y\| \ge -t\|x\| - (1-t)\|y\| \quad \text{so that} f(tx + (1-t)y) = -\ln(-\|tx + (1-t)y\|) \le -\ln(-t\|x\| - (1-t)\|y\|)$$

where we use that $\|\cdot\|$ is convex and $-\ln$ is decreasing. Then, as $-\ln$ is convex,

$$-\ln(-t||x|| - (1-t)||y||) \le -t\ln||x|| - (1-t)\ln||y|| = tf(x) + (1-t)f(y)$$

2. Show that $f(x) \ge ||x||$. Deduce that $\partial f(0) \supseteq B(0,1) = \{y : ||y|| \le 1\}$.

One has $-\ln(1+s) \ge -\ln 1 - s = -s$ by convexity of $-\ln$. Hence $f(x) \ge ||x||$. In particular $f(x) \ge y \cdot x$ for any y with $||y|| \le 1$, as f(0) = 0 this shows that $\partial f(0) \supseteq B(0, 1)$.

3. Show that for $x \neq 0$, ||x|| < 1,

$$\nabla f(x) = \frac{x}{\|x\|(1 - \|x\|)}$$

Deduce that for any p with ||p|| > 1, one can compute $x \in B(0,1)$ with $\nabla f(x) = p$. Deduce an expression for $f^*(p)$ (recall Legendre-Fenchel's identity). What is $f^*(p)$ for $||p|| \le 1$?

The formula is a simple differentiation, as f is C^{∞} in $B(0,1)\setminus\{0\}$. Then, for ||p|| > 1, if $p = \nabla f(x)$ one sees that x and p must be aligned and taking the norms, ||p|| = 1/(1-||x||) so that $||x|| = 1 - 1/||p|| \in (0,1)$ and x = (1 - 1/||p||)p/||p||.

Using that $f(x) + f^*(p) = \langle p, x \rangle$ for $p = \nabla f(x)$, we deduce that

$$f^*(p) = x \cdot p - f(x) = \|p\| - 1 + \ln(1 - (1 - 1/\|p\|))) = \|p\| - \ln \|p\| - 1.$$

For $||p|| \leq 1$, on the other hand, we have $p \in \partial f(0)$ so that $f^*(p) = 0 \cdot p - f(0) = 0$.

4. We want to compute $x = \text{prox}_{\tau f}(\bar{x})$ for a given $\bar{x} \in \mathbb{R}^d$ and $\tau > 0$. Write the equation satisfied by x and show that (i) x and \bar{x} are collinear; (ii) x = 0 if $\|\bar{x}\| \leq \tau$; (iii) if $\|\bar{x}\| > \tau$, then $\rho = \|x\|$ satisfies a second order equation which has two positive solutions. Using then that $\rho < 1$ and $\rho \leq \|\bar{x}\|$, give the right answer.

The problem to solve is

$$\min_{x} \frac{\|x - \bar{x}\|^2}{2\tau} + f(x)$$

and is solved by a unique point which satisfies

$$x - \bar{x} + \tau \partial f(x) \ni 0.$$

It means, either $\|\bar{x}\| \leq \tau$ and x = 0 is a solution, or, for $\|\bar{x}\| > \tau$, $x \neq 0$, $\|x\| < 1$ (as f(x) is finite) and

$$x + \frac{\tau x}{\|x\|(1 - \|x\|)} = \bar{x} \iff (\|x\|(1 - \|x\|) + \tau)x = \|x\|(1 - \|x\|)\bar{x}.$$

In particular we see that $x = \rho \bar{x} / \|\bar{x}\|$ for some $\rho > 0$, and taking the norm we have

$$||x||(1 - ||x||) + \tau = (1 - ||x||) ||\bar{x}||.$$

Denoting $\bar{\rho} := \|\bar{x}\| > \tau, \, \rho \in (0, 1)$ must solve

$$\rho^2 - (1+\bar{\rho})\rho + \rho - \tau = 0$$

which has two solutions

$$\rho^{+} = \frac{1 + \bar{\rho} + \sqrt{(1 - \bar{\rho})^2 + 4\tau}}{2}, \quad \rho^{-} = \frac{1 + \bar{\rho} - \sqrt{(1 - \bar{\rho})^2 + 4\tau}}{2}$$

with $\rho^+ + \rho^- = 1 + \bar{\rho}$ and $\rho^+ \rho^- = \bar{\rho} - \tau > 0$. Observe that $\rho^+ > (1 + \bar{\rho} + |1 - \bar{\rho}|)/2$ so that in case $\bar{\rho} \ge 1$, $\rho^+ > \bar{\rho} \ge 1$ (hence $\rho^- = 1 + \bar{\rho} - \rho^+ < 1$), and in case $\bar{\rho} < 1$, $\rho^+ > 1$ (hence $\rho^- < \bar{\rho} < 1$). Hence the right solution (giving the norm of x) is ρ^- , and one can write

$$x = \frac{1 + \|\bar{x}\| - \sqrt{(1 - \|\bar{x}\|)^2 + 4\tau}}{2}\bar{x}$$

Exercise II: The "Extragradient" method

Let X be a Hilbert space and A a maximal-monotone operator. We assume that A is defined everywhere in X and L-Lipschitz¹ (in particular, it implies that Ax is just one point, denoted Ax, for any x).

One wants to find $x^* \in X$ with $Ax^* = 0$. Let $S = \{x \in X : Ax = 0\}$ and assume that $S \neq \emptyset$.

 $^{^{1}\}mathrm{A}\ \mathrm{Lipschitz}\ \mathrm{maximal}\ \mathrm{monotone}\ \mathrm{must}\ \mathrm{be}\ \mathrm{defined}\ \mathrm{everywhere},\ \mathrm{thanks}\ \mathrm{to}\ \mathrm{Kirszbraun-Valentine's}\ \mathrm{theorem}.$

1. We first consider the elementary algorithm $x^{k+1} = x^k - \tau A x^k$, for $\tau > 0$, and $x^0 \in X$ given. Recall from the lecture notes the standard conditions on A and τ which guarantee that the sequence $(x^k)_{k>0}$ (weakly) converges to a point $x^* \in S$.

This is in the lecture notes. One needs A to be co-coercive: $\langle Ax - Ay, x - y \rangle \ge \mu \|Ax - Ay\|^2$, and that $0 < \tau < 2\mu$.

2. In general it is not clear that the algorithm in **1.** will converge. Consider for instance $X = \mathbb{R}^2$,

$$A = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}$$

Show that A satisfies the assumptions at the beginning of the exercise. Evaluate $||x^{k+1}||$ in function of x^k . Deduce that the algorithm always diverges if $x^0 \neq 0$.

A is Lipschitz (obvious), monotone since $\langle Ax - Ay, x - y \rangle = \langle A(x - y), x - y \rangle = 0$ for any x, y, maximal: if (z, p) are such that $\langle Ax - p, x - z \rangle \ge 0$ for all x, for x = z + ty, $y \in X, t > 0$, one finds that $0 \le \langle Az + tAy - p, ty \rangle = t \langle Az - p, y \rangle$ so that $\langle Az - p, y \rangle \ge 0$ for all y (we have used $\langle tAy, ty \rangle = 0$). It implies that p = Az.

Then, given $(x, y) \in \mathbb{R}^2$, we compute

$$\left\| (I - \tau A) \begin{pmatrix} x \\ y \end{pmatrix} \right\|^2 = \left\| \begin{array}{c} x - \tau y \\ y + \tau x \end{array} \right\|^2 = (x - \tau y)^2 + (y + \tau x)^2 = (1 + \tau^2)(x^2 + y^2).$$

Thus, $||x^k|| = \sqrt{1 + \tau^2}^k ||x^0||$ which shows the claim.

The extragradient algorithm (Korpelevich, 1976). One Considers the following twosteps algorithm, known as the "extra-gradient" method (as it computes an evaluation of A at an extrapolated point). Given $x^0 \in X$, $\tau > 0$, one lets for $k \ge 0$:

$$\begin{cases} y^k = x^k - \tau A x^k \\ x^{k+1} = x^k - \tau A y^k \end{cases}$$

One wants to show that with this correction, the algorithm converges for τ well chosen.

3. We consider the setting of question **2.**. Compute the matrix $B := I - \tau A(I - \tau A)$. Evaluate again $||x^{k+1}||$, and show that if $\tau < 1$ the algorithm converges.

We have

$$B = I - \tau A(I - \tau A) = I - \begin{pmatrix} 0 & \tau \\ -\tau & 0 \end{pmatrix} \begin{pmatrix} 1 & -\tau \\ \tau & 1 \end{pmatrix} = I - \begin{pmatrix} \tau^2 & \tau \\ -\tau & \tau^2 \end{pmatrix} = \begin{pmatrix} 1 - \tau^2 & -\tau \\ \tau & 1 - \tau^2 \end{pmatrix}$$

One has $x^{k+1} = x^k - \tau A y^k = x^k - \tau A (x^k - \tau A x^k) = (I - \tau A (I - \tau A)) x^k = B x^k$. Given $(x, y) \in \mathbb{R}^2$, $||B(x, y)^T||^2 = ((1 - \tau^2) x - \tau y)^2 + (\tau x + (1 - \tau^2) y)^2 = ((1 - \tau^2)^2 + \tau^2) ||(x, y)^T||^2$. Using that $((1 - \tau^2)^2 + \tau^2) = 1 - \tau^2 + \tau^4 = 1 - \tau^2 (1 - \tau^2)$ we find that if $0 < \tau < 1$,

$$||x^k|| = \sqrt{1 - \tau^2 (1 - \tau^2)}^k ||x^0|| \to 0$$

as $k \to \infty$ (with a linear rate) so that the algorithm converges.

4. We now return to the general case where A is a maximal monotone operator, L-Lipschitz, in a Hilbert space X. Show that if $0 < \tau L < 1$ and if x is a fixed point of the algorithm (meaning that if $x^k = x$, then $x^{k+1} = x$ as well), then $x \in S$.

We have, letting $y = x - \tau Ax$, that $x - \tau Ay = x$, that is Ay = 0 ($y \in S$). Then, $||Ax|| = ||Ax - Ay|| \le L||x - y||$ so that $||\tau Ax|| \le \tau L||x - y|| = \tau L||\tau Ax||$. Since $0 < \tau L < 1$ this is possible only if Ax = 0, that is $x \in S$.

5. Let $x^* \in S$. Using that A is monotone, first show (using the second line of the algorithm) that

$$\begin{aligned} \|x^{k+1} - x^*\|^2 &\leq \|x^k - x^*\|^2 - 2\tau \left\langle Ay^k, x^k - y^k \right\rangle + \tau^2 \|Ay^k\|^2 \\ &= \|x^k - x^*\|^2 - 2\left\langle x^k - x^{k+1}, x^k - y^k \right\rangle + \tau^2 \|x^k - x^{k+1}\|^2. \end{aligned}$$

One has

$$\|x^{k+1} - x^*\|^2 = \|x^k - x^*\|^2 - 2\tau \left\langle Ay^k, x^k - x^* \right\rangle + \tau^2 \|Ay^k\|^2.$$

We write (recall that $Ax^* = 0$)

$$\left\langle Ay^{k}, x^{k} - x^{*} \right\rangle = \left\langle Ay^{k}, x^{k} - y^{k} \right\rangle + \left\langle Ay^{k}, y^{k} - x^{*} \right\rangle$$
$$= \left\langle Ay^{k}, x^{k} - y^{k} \right\rangle + \left\langle Ay^{k} - Ax^{*}, y^{k} - x^{*} \right\rangle \ge \left\langle Ay^{k}, x^{k} - y^{k} \right\rangle.$$

Hence,

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - 2\tau \left\langle Ay^k, x^k - y^k \right\rangle + \tau^2 \|Ay^k\|^2.$$

We conclude using again that $\tau Ay^k = x^k - x^{k+1}$.

6. Deduce, using now that A is L-Lipschitz, that

$$||x^{k+1} - x^*||^2 \le ||x^k - x^*||^2 - (1 - \tau^2 L^2) ||y^k - x^k||^2.$$

One has

$$\begin{aligned} \|x^{k+1} - x^*\|^2 &\leq \|x^k - x^*\|^2 - 2\left\langle x^k - x^{k+1}, x^k - y^k \right\rangle + \|x^{k+1} - x^k\|^2 \\ &= \|x^k - x^*\|^2 + \|x^{k+1} - y^k\|^2 - \|x^k - y^k\|^2 \\ &= \|x^k - x^*\|^2 + \tau^2 \|Ay^k - Ax^k\|^2 - \|x^k - y^k\|^2 \\ &\leq \|x^k - x^*\|^2 + \tau^2 L^2 \|y^k - x^k\|^2 - \|x^k - y^k\|^2 \end{aligned}$$

7. We now assume $0 < \tau < 1/L$. What can we say of the sequence $(x^k)_{k\geq 0}$? Of the sequence $(||x^k - x^*||)_{k\geq 0}$ for $x^* \in S$? Of the sequence $(x^k - y^k)_{k\geq 0}$?

The first is bounded (and hence has weakly converging subsequences), the second is decreasing (and hence has a limit), the last must go to zero, as the series

$$(1 - \tau^2 L^2) \sum_{k=0}^n \|y^k - x^k\|^2 + \|x^{n+1} - x^*\|^2 \le \|x^0 - x^*\|^2$$

is bounded.

8. As in the lecture notes, we denote $m(x^*) = \lim_{k\to\infty} ||x^k - x^*||$, for $x^* \in S$. Let \bar{x} be the (weak) limit of a subsequence $(x^{k_l})_l$. Show that $Ax^{k_l} \to 0$ (strongly). Using that A is maximal-monotone, deduce that $A\bar{x} = 0$, that is $\bar{x} \in S$. Deduce from Opial's lemma that x^k converges (weakly in X) to \bar{x} .

As we saw, (x^k) is bounded and therefore has weakly converging subsequences. One has here in addition that $Ax^{k_l} = (x^{k_l} - y^{k_l})/\tau \to 0$ in norm (strongly). If $z \in X$ by monotonicity one has $0 \leq \langle Az - Ax^{k_l}, z - x^{k_l} \rangle \to \langle Az, z - \bar{x} \rangle$. We deduce that for all $z \in X$, $\langle Az, z - \bar{x} \rangle \geq 0$ and this shows that $A\bar{x} = 0$ (precisely that $0 \in A\bar{x}$, but as we know already $A\bar{x}$ is a set with exactly one element). In particular $||x^{k_l} - \bar{x}|| \to m(\bar{x})$.

Now, Opial's lemma shows that $m(\bar{x}) < m(x^*)$ for all $x^* \in S \setminus \{\bar{x}\}$. This means that if $\bar{x}' \in S$ is the limit of any other converging subsequence of (x^k) , we must have $\bar{x}' = \bar{x}$. Hence $x^k \rightharpoonup \bar{x}$.

Exercise III: A nonlinear proximal point algorithm

We consider X a Hilbert space and a strictly convex lower-semicontinuous (lsc) function $\psi: X \to \mathbb{R} \cup \{+\infty\}$ such that the interior of dom ψ , denoted D, is not empty, $\overline{D} = \operatorname{dom} \psi$, $\psi \in C^1(D) \cap C^0(\overline{D})$, and $\partial \psi(x) = \emptyset$ for all $x \notin D$. In other words, $\partial \psi(x)$ is either \emptyset (if $x \notin D$), or a singleton $\{\nabla \psi(x)\}$ (if $x \in D$). We define the "Bregman distance associated to ψ ", denoted $D_{\psi}(x, y)$, as, for $y \in D$ and $x \in X$,

$$D_{\psi}(x,y) := \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle.$$

1. Show that $D_{\psi}(x, y) \ge 0$, and that $D_{\psi}(x, y) = 0 \Rightarrow y = x$. What further estimate can we write if in addition ψ is strongly convex? Why is D_{ψ} not a distance in the classical sense?

 $D_{\psi}(x,y) \geq 0$ because ψ is convex. If $D_{\psi}(x,y) = 0$, then for $t \in [0,1]$, $\psi(tx+(1-t)y) \leq t\psi(x) + (1-t)\psi(y) = \psi(y) + t \langle \nabla \psi(y), x-y \rangle \leq \psi(y+t(x-y))$ Hence ψ is affine on [x,y], which is a contradiction to ψ being strictly convex unless x = y. Finally, if ψ is γ -convex one has for x, y:

$$\psi(x) \ge \psi(y) + \langle \nabla \psi(y), x - y \rangle + \frac{\gamma}{2} \|x - y\|^2$$

so that $D_{\psi}(x, y) \ge (\gamma/2) ||x - y||^2$.

On the other hand there is no reason to have $D_{\psi}(x,y) = D_{\psi}(y,x)$ in general.

2. Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be convex, lsc. Assume $\lim_{|x|\to\infty} f(x) = +\infty$. Let $\tau > 0$. Let $\bar{x} \in D$. Show that there exist a minimizer \hat{x} of

$$\min_{x} \frac{1}{\tau} D_{\psi}(x, \bar{x}) + f(x)$$

Show that then $\hat{x} \in D$ and the "Euler-Lagrange" equation (or Fermat's rule),

$$\nabla \psi(\hat{x}) - \nabla \psi(\bar{x}) + \tau \partial f(\hat{x}) \ni 0 \tag{EL}$$

The function in the minimization problem is convex, lsc, and goes to infinity when $|x| \to \infty$. Hence it is also weakly convex and has a minimizer. (Unique as ψ is strictly convex.) Moreover, as ψ is C^1 in an open set, one has $\partial (D_{\psi}(\cdot, \bar{x})/\tau + f) = \partial D_{\psi}(\cdot, \bar{x})/\tau + \partial f = \nabla D_{\psi}(\cdot, \bar{x})/\tau + \partial f$. Hence one derives the equation by observing that one should have $0 \in \partial (D_{\psi}(\cdot, \bar{x})/\tau + f)(\hat{x})$. In particular $x \in D$ otherwise the subgradient would be empty.

3. Deduce from (EL) and the definition of a subgradient the "three point relationship": for any $x \in X$,

$$\frac{1}{\tau}D_{\psi}(x,\bar{x}) + f(x) \ge \frac{1}{\tau}D_{\psi}(\hat{x},\bar{x}) + f(\hat{x}) + \frac{1}{\tau}D_{\psi}(x,\hat{x}).$$
(3P)

We have

$$-\nabla\psi(\hat{x}) + \nabla\psi(\bar{x}) \in \tau\partial f(\hat{x})$$

so that for any x,

$$f(x) \ge f(\hat{x}) + \frac{1}{\tau} \left\langle \nabla \psi(\bar{x}) - \nabla \psi(\hat{x}), x - \hat{x} \right\rangle.$$

Hence

$$\begin{aligned} f(x) + \frac{1}{\tau} D_{\psi}(x,\bar{x}) &\geq f(\hat{x}) + \frac{1}{\tau} \left(\langle \nabla \psi(\bar{x}) - \nabla \psi(\hat{x}), x - \hat{x} \rangle + \psi(x) - \psi(\bar{x}) - \langle \nabla \psi(\bar{x}), x - \bar{x} \rangle \right) \\ &= f(\hat{x}) + \frac{1}{\tau} \left(- \langle \nabla \psi(\hat{x}), x - \hat{x} \rangle + \psi(x) - \psi(\bar{x}) - \langle \nabla \psi(\bar{x}), \hat{x} - \bar{x} \rangle \right) \\ &= f(\hat{x}) + \frac{1}{\tau} \left(\psi(x) - \psi(\hat{x}) - \langle \nabla \psi(\hat{x}), x - \hat{x} \rangle + \psi(\hat{x}) - \psi(\bar{x}) - \langle \nabla \psi(\bar{x}), \hat{x} - \bar{x} \rangle \right) \end{aligned}$$

which shows (3P).

4. We consider the "nonlinear proximal point" algorithm: $x^0 \in D$,

$$x^{k+1} = \arg\min_{x} \frac{1}{\tau} D_{\psi}(x, x^k) + f(x).$$

Using (3P), show that $f(x^k)$ is non-increasing. Then, show that for any $x \in \overline{D}$,

$$f(x^k) - f(x) \le \frac{1}{k\tau} D_{\psi}(x, x^0)$$

If we choose $x = \bar{x} = x^k$ and then $\hat{x} = x^{k+1}$ in (3P) we find

$$f(x^{k+1}) + \frac{1}{\tau} \left(D_{\psi}(x^{k+1}, x^k) + D_{\psi}(x^k, x^{k+1}) \right) \le f(x^k)$$

so that $f(x^k)$ must be nonincreasing. (Moreover if $f(x^k) = f(x^{k+1})$ then $x^{k+1} = x^k$, it is the minimizer of f in D, as then $0 \in \partial f(x^k)$).

If we choose $\bar{x} = x^k$, x arbitrary and then $\hat{x} = x^{k+1}$ in (3P) we find

$$f(x^{k+1}) - f(x) + \frac{1}{\tau} \left(D_{\psi}(x^{k+1}, x^k) + D_{\psi}(x, x^{k+1}) \right) \le \frac{1}{\tau} D_{\psi}(x, x^k)$$

Summing this for k = 0, ..., n - 1 and using that $f(x^k)$ is decreasing gives

$$n(f(x^n) - f(x)) + \frac{1}{\tau} D_{\psi}(x, x^n) \le \frac{1}{\tau} D_{\psi}(x, x^0).$$

which yields the requested inequality.

5. Assume $x^k \to x^*$ weakly: what is x^* ?

One has $f(x^*) \leq \liminf_k f(x^k)$ as f is convex, lsc (hence also weakly lsc). Hence $f(x^*) - f(x) \leq 0$ for any $x \in \overline{D}$. Moreover as $x^k \in D$, $x^* \in \overline{D}$ (again we use that a closed convex set is weakly closed). Hence x^* is a minimizer of f in D.

6. We assume in addition that there exists $\gamma > 0$ such that $h = f - \gamma \psi$ is convex. Show (using h) that (3P) can be improved into:

$$\frac{1}{\tau}D_{\psi}(x,\bar{x}) + f(x) \ge \frac{1}{\tau}D_{\psi}(\hat{x},\bar{x}) + f(\hat{x}) + \frac{1+\gamma\tau}{\tau}D_{\psi}(x,\hat{x}).$$
(3P_γ)

Hint: write that $f(x) = h(x) + \gamma \psi(x) = (h(x) + \gamma [\psi(\bar{x}) + \langle \nabla \psi(\bar{x}), x - \bar{x} \rangle]) + \gamma D_{\psi}(x, \bar{x})$ and use (3P) after having added $(1/\tau)D_{\psi}(x,\bar{x})$; or write (EL) using that $\partial f(\hat{x}) = \partial h(\hat{x}) + \gamma \nabla \psi(\hat{x})$ and work as in the proof of (3P) in **3**.

Let us use that $f(x) = h(x) + \gamma \psi(x) = (h(x) + \gamma [\psi(\bar{x}) + \langle \nabla \psi(\bar{x}), x - \bar{x} \rangle])$ and denote $h'(x) := h(x) + \gamma [\psi(\bar{x}) + \langle \nabla \psi(\bar{x}), x - \bar{x} \rangle]$. Then from (3P) we have

$$\begin{aligned} \frac{1}{\tau} D_{\psi}(x,\bar{x}) + f(x) &= \frac{1+\tau\gamma}{\tau} D_{\psi}(x,\bar{x}) + h'(x) \ge \frac{1+\tau\gamma}{\tau} D_{\psi}(\hat{x},\bar{x}) + h'(\hat{x}) + \frac{1+\tau\gamma}{\tau} D_{\psi}(x,\hat{x}) \\ &= \frac{1}{\tau} D_{\psi}(\hat{x},\bar{x}) + f(\hat{x}) + \frac{1+\tau\gamma}{\tau} D_{\psi}(x,\hat{x}) \end{aligned}$$

7. Deduce the "linear" rate of convergence for the algorithm:

$$f(x^{k+1}) - f(x^*) \le \frac{1}{(1+\gamma\tau)^k} D_{\psi}(x^*, x^0)$$

where x^* is a minimizer of f in \overline{D} .

Now we have

$$f(x^{k+1}) - f(x) + \frac{1}{\tau} D_{\psi}(x^{k+1}, x^k) + \frac{1 + \tau\gamma}{\tau} D_{\psi}(x, x^{k+1}) \le \frac{1}{\tau} D_{\psi}(x, x^k).$$

Choosing $x = x^*$ a minimizer of f over \overline{D} , we have that $f(x^{k+1}) - f(x^*) \ge 0$ so that

$$\frac{1+\tau\gamma}{\tau}D_{\psi}(x^*, x^{k+1}) \le \frac{1}{\tau}D_{\psi}(x^*, x^k).$$

It follows that $D_{\psi}(x^*, x^k) \leq 1/(1 + \tau \gamma)^k D_{\psi}(x^*, x^0)$ and therefore also $f(x^{k+1}) - f(x^*)$ (using the inequality once more).

Exercise IV: convex homogeneous functions

Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ $(d \ge 1)$ be convex, lsc, and positively 2-homogeneous: for any $x \in \mathbb{R}^d, t > 0, f(tx) = t^2 f(x)$. We want to show that \sqrt{f} is also convex (1-homogeneous).

1. Show that f^* (the convex conjugate) is positively 2-homogeneous. (Hint: evaluate $f^*(ty)/t^2$ for t > 0.)

$$\frac{1}{t^2}f^*(ty) = \sup_x \frac{1}{t}y \cdot x - \frac{1}{t^2}f(x) = \sup_x y \cdot \frac{x}{t} - f(\frac{x}{t}) = f^*(y).$$

2. Let $h(x) = \sup_{f^*(y) \le 1} y \cdot x$ be the conjugate of the characteristic function $\delta_{\{f^*(\cdot) \le 1\}}$. Show that h is convex, one-homogeneous, non-negative.

h is trivially convex lsc as a sup of affine functions (or as the conjugate of $\delta_{\{f^*(\cdot) \leq 1\}}$). Also, for t > 0, $h(tx) = \sup_{\dots} y \cdot tx = t \sup_{\dots} y \cdot x = th(x)$ is trivial. As $f^*(0) \leq 0$ (f^* is lsc, $f^*(0) \leq \liminf_{t \to 0} f^*(tx) = 0$ for any $x \in \text{dom } f^*$), $0 \in \{f^*(\cdot) \leq 1\}$ and $h \geq 0$.

3. Show that $f = h^2/4$, conclude.

$$f(x) = \sup_{y} x \cdot y - f^{*}(y) = \sup_{f^{*}(\eta)=1, t > 0, y = t\eta} tx \cdot \eta - t^{2} = \sup_{t > 0} th(x) - t^{2} = \frac{h(x)^{2}}{4}.$$

Hence $\sqrt{f} = h/2$ is a convex function.