Continuous Optimization Introduction à l'optimisation continue Assessment (4th January 2021)

1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:

- 1. $x \mapsto |x|^3/3;$
- 2. $x \mapsto 3x;$
- 3. $x \mapsto \langle Ax, x \rangle / 2$ where $x \in \mathbb{R}^n$ and A is a symmetric, positive definite operator;
- 4. $x \mapsto -\sqrt{x}$ if $x \ge 0, +\infty$ if x < 0.

In general, we have $f^*(y) = \sup_y xy - f(x)$ and the sup is reached for y = f'(x), or $x = (f')^{-1}(y)$, if this makes sense (in the strictly convex case, it should since f' is an increasing function, invertible). For $f(x) = |x|^3/3$, we write y = |x|x so that $x = \sqrt{|y|}$ sign (y). We find $f^*(y) = |y|^{3/2} - |y|^{3/2}/3 = (2/3)|y|^{3/2}$.

For f(x) = 3x, we can write that $f(x) = \sup_{y=3} yx$, that is, f is the conjugate of the characteristic function:

$$\delta_{\{3\}}(y) = \begin{cases} 0 & \text{if } y = 3\\ +\infty & \text{else.} \end{cases}$$

We find that $f^* = \delta_{\{3\}}$.

For $f(x) = -\sqrt{x}$ $(x \ge 0)$ we can have $y = f'(x) = -1/(2\sqrt{x})$ only if y < 0. Actually, if $y \ge 0$, $yx + \sqrt{x} \to +\infty$ as $x \to +\infty$, so that $f^*(y) = +\infty$. Otherwise, $x = 1/(4y^2)$ and $f^*(y) = -1/(4|y|) + 1/(2|y|) = 1/(4|y|) = -1/(4y)$.

For $f(x) = \langle Ax, x \rangle / 2, x \in \mathbb{R}^n$, we write

$$f^*(y) = \sup_{x} \langle y, x \rangle - \langle Ax, x \rangle / 2$$

and since f is strongly convex the sup is reached at some point x, and one has y - Ax = 0, that is $x = A^{-1}y$. We find that $f^*(y) = \langle A^{-1}y, y \rangle / 2$.

2. Evaluate $y = \operatorname{prox}_{\tau f}(x)$ for $f(x) = |x|^3/3$, $\tau > 0$.

That is, we have to solve

$$\min_{y} \frac{|y|^3}{3} + \frac{|y-x|^2}{2\tau}.$$

The minimizer satisfies $\tau |y|y + y - x = 0$, that is $y(1 + \tau |y|) = x$. In particular y has the same sign as x, and $\operatorname{prox}_{\tau f}(-x) = -\operatorname{prox}_{\tau f}(x)$. Hence we may assume that x > 0, and y > 0. We solve $\tau y^2 + y - x = 0$ which has a positive and a negative solution. We are interested only in the positive solution, it is

$$y = \frac{\sqrt{1+4\tau x - 1}}{2\tau}.$$

(More difficult) Evaluate the convex conjugate of the "Entropy" function: 3.

$$S : \mathbb{R}^n \to [0, +\infty]; \qquad x \mapsto \begin{cases} \sum_{i=1}^n x_i \ln x_i & \text{if } x_i \ge 0 \ \forall i, \sum_i x_i = 1, \\ +\infty & \text{else,} \end{cases}$$

where here by convention we let $t \ln t = 0$ when t = 0. (Hint: introduce a Lagrange multiplier for the constraint $\sum_i x_i = 1.$)

We have to compute, for $y \in \mathbb{R}^n$,

$$S^*(y) = \sup_{x_i \ge 0, \sum_i x_i = 1} \sum_i x_i y_i - x_i \ln x_i.$$

At the maximum point x (which exists since x is in a compact set) one should have y_i – $\ln x_i - 1 = \lambda$ where $\lambda \in \mathbb{R}$ is the Lagrange multiplier. That is, $x_i = \exp(y_i - 1 - \lambda)$. One has $\sum_{i} x_i = (1/\exp(1+\lambda)) \sum_{i} \exp(y_i) = 1$ so that $1 + \lambda = \ln \sum_{i} \exp(y_i)$. (Incidentally, $\begin{aligned} x_i &= \exp(y_i) / (\sum_j \exp(y_j)).) \\ \text{Then, we use } \sum_i (x_i y_i - x_i \ln x_i - x_i) = \lambda \sum_i x_i \text{ to deduce that } S^*(y) = 1 + \lambda. \text{ It follows} \end{aligned}$

$$S^*(y) = \ln \sum_{i=1}^n e^{y_i}$$

(the "soft-max" or "log-sum-exp" function).

2. Convex analysis: Moreau-Yosida regularization

Given $f:\mathbb{R}^n\to]-\infty,+\infty]$ a convex, lower-semicontinuous function, which is proper (that is, $f > -\infty$ and dom $f \neq \emptyset$, we recall that the Moreau-Yosida regularization of f with parameter $\tau > 0$ is given by:

$$f_{\tau}(x) = \min_{y} f(y) + \frac{1}{2\tau} \|y - x\|^2$$

We recall that for any x, this problem has a unique minimizer y (because the function to minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as $y = \operatorname{prox}_{\tau f}(x)$, the "proximity operator" of τf evaluated at x. In particular, $f_{\tau}(x) \in \mathbb{R}$ and dom $f_{\tau} = \mathbb{R}^n$. Further properties of the prox_{τf} operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that f_{τ} is convex, lower-semicontinuous.

The function f_{τ} is trivially convex as if $x, x' \in \mathbb{R}^n$ and $t \in [0, 1]$, letting $y = \operatorname{prox}_{\tau f}(x)$, $y' = \text{prox}_{\tau f}(x')$, and $y_t = ty + (1-t)y'$,

$$\begin{aligned} f_{\tau}(tx+(1-t)x') &\leq f(y_t) + \frac{1}{2\tau} \|y_t - (tx+(1-t)x')\|^2 \\ &\leq tf(y) + (1-t)f(y') + t\frac{1}{2\tau} \|y - x\|^2 + (1-t)\frac{1}{2\tau} \|y' - x'\|^2 \\ &= tf_{\tau}(x) + (1-t)f_{\tau}(x'). \end{aligned}$$

It is lower-semicontinuous as the inf-convolution of a quadratic function and a convex, lowersemicontinuous and proper function (Lemma 4.20 in the notes). This can be easily re-proved in this particular, simpler case: if $x_n \to x$ then since $\operatorname{prox}_{\tau f}$ is 1-Lipschitz (see for instance Thm 4.28), $y_n := \operatorname{prox}_{\tau f}(x_n) \to \operatorname{prox}_{\tau f}(x) =: y$ and one has

$$f_{\tau}(x) \le f(y) + \frac{1}{2\tau} \|y - x\|^2 \le \liminf_{n \to \infty} f(y_n) + \frac{1}{2\tau} \|y_n - x_n\|^2 = \liminf_{n \to \infty} f_{\tau}(x_n).$$

2. Let $x \in \mathbb{R}^n$ and $p \in \partial f_\tau(x)$. Show that for any $h \in \mathbb{R}^n$,

$$p \cdot h \le \left(\frac{x - \operatorname{prox}_{\tau f}(x)}{\tau}\right) \cdot h.$$

(Hint: bound from below and above $f_{\tau}(x+th)$, for t > 0 small, then send t to zero.) Deduce that f_{τ} is differentiable at x, with $\nabla_{\tau} f(x) = (x - \operatorname{prox}_{\tau f}(x))/\tau$.

One has

$$f_{\tau}(x+th) \ge f_{\tau}(x) + tp \cdot h$$

and for $y = \operatorname{prox}_{\tau f}(x)$,

$$f_{\tau}(x+th) \leq f(y) + \frac{1}{2\tau} \|x+th-y\|^2 = f(y) + \frac{1}{2\tau} \|x-y\|^2 + t\frac{1}{\tau}(x-y) \cdot h + \frac{t^2}{2\tau} h^2$$
$$= f_{\tau}(x) + t\frac{1}{\tau}(x-y) \cdot h + \frac{t^2}{2\tau} h^2.$$

Hence, combining both inequalities and dividing by t > 0,

$$p \cdot h \le \frac{1}{\tau}(x-y) \cdot h + \frac{t}{2\tau}h^2$$

and letting $t \to 0$ we deduce the required inequality. Then, since this is true for any h, and in particular for both h and -h, it is an equality, and it shows that $p = (x - y)/\tau$. In particular, there is only a unique subgradient at each point which shows that f_{τ} is differentiable at x and $p = \nabla f_{\tau}(x)$.

3. Recall why $\operatorname{prox}_{\tau f}$ is "firmly non-expansive". Deduce that ∇f_{τ} is $(1/\tau)$ -Lipschitz.

Thm 4.28 asserts that $\operatorname{prox}_{\tau f} = (I + \tau \partial f)^{-1}$ is "firmly non-expansive" as the "resolvent" of the maximal-monotone operator $A = \tau \partial f$. (We recall that by minimality, $\operatorname{prox}_{\tau f}(x) = y$ solves

$$\frac{y-x}{\tau} + \partial f(y) \ni 0 \iff y = (I + \tau \partial f)^{-1}(x)$$

and is the resolvent of a maximal monotone operator.) This means that

$$\|x - \operatorname{prox}_{\tau f}(x) - (x' - \operatorname{prox}_{\tau f}(x'))\|^2 + \|\operatorname{prox}_{\tau f}(x) - \operatorname{prox}_{\tau f}(x')\|^2 \le \|x - x'\|^2$$

and in particular $\|\tau \nabla f_{\tau}(x) - \tau \nabla f_{\tau}(x')\| \le \|x - x'\|.$

4. Recall "Moreau's" identity. Deduce that $\nabla f_{\tau}(x) = \operatorname{prox}_{\frac{1}{\tau}f^*}(x/\tau)$ where f^* is the convex conjugate (Legendre-Fenchel transform) of f.

This is in the notes:

$$x = \operatorname{prox}_{\tau f}(x) + \tau \operatorname{prox}_{\frac{1}{f^*}}(\frac{x}{\tau}).$$

And the other identity follows from this and the previous results.

In what follows, ****to simplify**** we let $\tau = 1$.

5. Deduce from the previous results that for any x,

$$\nabla f_1(x) + \nabla (f^*)_1(x) = x$$

(here $(f^*)_1$ is the Moreau-Yosida regularization with parameter $\tau = 1$ of the conjugate f^* of f, and *not!!* the conjugate of f_1).

One has

$$\nabla f_1(x) + \nabla (f^*)_1(x) = (x - \operatorname{prox}_f(x)) + (x - \operatorname{prox}_{f^*}(x))$$
$$= x - [x - \operatorname{prox}_f(x) - \operatorname{prox}_{f^*}(x)] = x$$

thanks again to Moreau's identity.

6. Therefore by integration one finds: $f_1(x) + (f^*)_1(x) = ||x||^2/2 + C$ for some constant C, with $C = f_1(0) + (f^*)_1(0)$. Let $y = \text{prox}_f(0)$, $z = \text{prox}_{f^*}(0)$. Show that y = -z. Deduce that C = 0.

First, if $y = \text{prox}_f(0), z = \text{prox}_{f^*}(0)$, with Moreau's identity we have 0 = y + z, that is y = -z. By definition, $y + \partial f(y) \ni 0$, that is, $z = -y \in \partial f(y)$ and $y \in \partial f^*(z)$. In particular, $f(y) + f^*(z) = y \cdot z = -\|y\|^2$ so that

$$C = f_1(0) + (f_1^*)(0) = \frac{\|y\|^2}{2} + f(y) + \frac{\|z\|^2}{2} + f^*(z) = 0.$$

3. Optimization: Nonlinear gradient descent

Let $\|\cdot\|$ be a norm on \mathbb{R}^n , possibly different from the standard Euclidean 2-norm: for instance, $\|x\| = \sum_{i=1}^n |x_i|$ (the 1-norm), or $\|x\| = \max\{|x_1|, \ldots, |x_n|\}$ (the ∞ -norm). (A norm is any convex, 1-homogeneous, even, function with values in $[0, +\infty[$ and which is strictly positive except in 0.) We define the dual (or polar) norm $\|y\|_*$ by the formula:

$$||y||_* = \sup_{x:||x|| \le 1} y \cdot x$$

where $y \cdot x$ is the standard dot product $y \cdot x = \sum_{i=1}^{n} y_i x_i$. In particular, one has $y \cdot x \leq ||y||_* ||x||$ for all y, x. (The "right" point of view should be that y is in the dual E^* of $E = \mathbb{R}^n$ (which is also $E^* = \mathbb{R}^n$) and that $y \cdot x$ is the evaluation of the linear form y at x. Then, $||\cdot||$ is the norm on E while $||\cdot||_*$ is the norm on E^* .)

1. Show that if $\mathcal{F}(x) := ||x||^2/2$, then its convex conjugate is $\mathcal{F}^*(y) = ||y||_*^2/2$. Deduce that the dual norm of $||\cdot||_*$ is $||\cdot||$, that is, for all x,

$$||x|| = \sup_{y:||y||_* \le 1} y \cdot x.$$

One has

$$\mathcal{F}^*(y) = \sup_x x \cdot y - \frac{\|x\|^2}{2} = \sup_{t \ge 0, \|x\| = t} x \cdot y - \frac{t^2}{2}$$
$$= \sup_{t \ge 0} \left(\sup_{x: \|x\| = t} x \cdot y \right) - \frac{t^2}{2} = \sup_{t \ge 0} t \|y\|_* - \frac{t^2}{2} = \frac{\|y\|_*^2}{2}.$$

Hence in particular if we introduce the dual norm $\|\cdot\|_{**}$, the same computation will show that $\mathcal{F}^{**}(x) = \|x\|_{**}^2/2$. Since \mathcal{F} is obviously convex, lsc., then $\mathcal{F}^{**} = \mathcal{F}$ so that $\|x\|_{**} = \|x\|$.

- **2.** Compute $\|\cdot\|_*$ in the following cases:
 - i. 1-norm: $||x|| = \sum_{i=1}^{n} |x_i|$;
 - ii. 2-norm: $||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} = \sqrt{x \cdot x}.$
 - (i) There are many ways to evaluate this dual norm, for instance one has:

$$\sum_{i=1}^{n} |x_i| = \sum_{i=1}^{n} \sup_{|y_i| \le 1} y_i x_i = \sup_{|y_i| \le 1 \, \forall i} \sum_{i=1}^{n} y_i x_i$$

which shows that $\|\cdot\|$ is the dual norm of the norm $y \mapsto \max_{i=1,\dots,n} |y_i|$. We deduce that this is also its dual norm.

(ii) For the 2-norm, we know that $x \cdot y \leq ||x|| ||y|| \leq ||x||$ if $||y|| \leq 1$, and choosing y = x/||x||, we have equality, showing that $||\cdot||_* = ||\cdot||$.

Now, we consider a function f whose differential is L-Lipschitz in the normed space $E = (\mathbb{R}^n, \|\cdot\|)$, which means precisely that for any $x, x' \in \mathbb{R}^n$,

$$\|\nabla f(x) - \nabla f(x')\|_* \le L \|x - x'\|$$

where $\nabla f(x) \in E^*$ is the vector of partial derivatives $(\partial f/\partial x_i)_{i=1}^n$.

3. Show that, as in the Euclidean case, one has for $x, x' \in E$,

$$f(x') \le f(x) + \nabla f(x) \cdot (x' - x) + \frac{L}{2} ||x - x'||^2.$$

This follows as usual from

$$\begin{split} f(x') &= f(x) + \int_0^1 \nabla f(x + t(x' - x)) \cdot (x' - x) dt \\ &= f(x) + \nabla f(x) \cdot (x' - x) + \int_0^1 \left(\nabla f(x + t(x' - x)) - \nabla f(x) \right) \cdot (x' - x) dt \\ &\leq f(x) + \nabla f(x) \cdot (x' - x) + \int_0^1 \left\| \nabla f(x + t(x' - x)) - \nabla f(x) \right\|_* \|x' - x\| dt \\ &\leq f(x) + \nabla f(x) \cdot (x' - x) + L \int_0^1 \|t(x' - x)\| \|x' - x\| dt \\ &= f(x) + \nabla f(x) \cdot (x' - x) + \frac{L}{2} \|x' - x\|^2 \end{split}$$

We want to define a "gradient descent" method in the norms $\|\cdot\|, \|\cdot\|_*$. We choose $x^0 \in E$. Given $x^k, k \ge 0$, we define $x^{k+1} = x^k - p^k$ and we find the descent direction p^k as follows: we observe that

$$f(x^{k+1}) \le f(x^k) - \nabla f(x^k) \cdot p^k + \frac{L}{2} ||p^k||^2.$$

Then, we choose a p^k which minimizes the expression in the right-hand side of this equation.

4. Show that one has to choose $p^k \in \partial \mathcal{F}^*(\frac{1}{L}\nabla f^*)$, and that one obtains, for such a choice:

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_*^2.$$

One has to find p^k which minimizes

$$\begin{split} \min_{p^k} -\nabla f(x^k) \cdot p^k + \frac{L}{2} \|p^k\|^2 &= -L \max_{p^k} \frac{1}{L} \nabla f(x^k) \cdot p^k - \mathcal{F}(p^k) = -L\mathcal{F}^*(\frac{1}{L} \nabla f(x^k)) = -\frac{1}{2L} \|\nabla f(x^k)\|_*^2. \end{split}$$
A minimizer satisfies $\frac{1}{L} \nabla f(x^k) - \partial \mathcal{F}(p^k) \ni 0$, that is, $\frac{1}{L} \nabla f(x^k) \in \partial \mathcal{F}(p^k)$, or equivalently, $p^k \in \partial \mathcal{F}^*(\frac{1}{L} \nabla f(x^k)). \end{split}$

5. We assume the set $X = \{f \leq f(x^0)\}$ is bounded, and observe that $x^k \in X$ for any $k \geq 1$. We also assume that f has a minimizer x^* (obviously, $x^* \in X$). As in the Lecture notes, show that for all $k \geq 0$:

$$f(x^{k+1}) - f(x^*) \le f(x^k) - f(x^*) - \frac{(f(x^k) - f(x^*))^2}{2L \|x^k - x^*\|^2},$$

and:

$$f(x^k) - f(x^*) \le \frac{2LC}{k+1}$$

where $C = \max_{x \in X} ||x - x^*||^2$.

See Lemma 2.6, Thm. 2.7 in the Lecture notes.

4. Optimization: Polyak's subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent method, which can be used whenever the optimal value of a problem is known. One consider a convex function $f : \mathbb{R}^n \to \mathbb{R}$ (dom $f = \mathbb{R}^n$), which has a non empty set of minimizer(s) X^* , and we assume that the minimal value f^* is known. For instance:

$$f(x) = \max_{1 \le i \le p} |a^i \cdot x - b_i|$$

where $a^i \in \mathbb{R}^n, b \in \mathbb{R}^p$ are such that $a^i \cdot x = b_i, i = 1, \dots, p$ has a solution: in that case $f^* = 0$.

Then, one chooses $x^0 \in \mathbb{R}^n$ and computes a subgradient descent method by picking for all $k \ge 0, p^k \in \partial f(x^k)$ and

$$x^{k+1} = x^k - \frac{f(x^k) - f^*}{\|p^k\|^2} p^k.$$

1. Show that, if $x^* \in X^*$ is any minimizer,

$$||x^{k+1} - x^*||^2 \le ||x^k - x^*||^2 - \frac{(f(x^k) - f^*)^2}{||p^k||^2}$$

What do we deduce for the sequence $(x^k)_{k\geq 0}$?

We write:

$$\begin{aligned} \|x^{k+1} - x^*\|^2 &= \|x^k - x^*\|^2 - 2\frac{(f(x^k) - f^*)p^k \cdot (x^k - x^*)}{\|p^k\|^2} + \frac{(f(x^k) - f^*)^2}{\|p^k\|^2} \\ &\leq \|x^k - x^*\|^2 - \frac{(f(x^k) - f^*)^2}{\|p^k\|^2}. \end{aligned}$$

because simply, $p^k \cdot (x^k - x^*) \ge f(x^k) - f(x^*)$ since $p^k \in \partial f(x^k)$. In particular, the sequence of iterates is bounded (and has converging subsequences).

2. Why is it true that $C := \sup_k \|p^k\| < +\infty$? Deduce that $\sum_{k=0}^{\infty} (f(x^k) - f^*)^2 < +\infty$.

The first question shows that x^k is a bounded sequence. By assumption, f is convex, defined on \mathbb{R}^n , so we know that it is locally Lipschitz, and its subgradients are locally bounded. This shows that the $\sup_k \|p^k\|$ must be finite.

Hence, letting $C \ge \sup_k \|p^k\|$, one finds

$$\|x^{k+1} - x^*\|^2 + \frac{(f(x^k) - f^*)^2}{C^2} \le \|x^{k+1} - x^*\|^2 + \frac{(f(x^k) - f^*)^2}{\|p^k\|^2} \le \|x^k - x^*\|^2$$

and summing from k = 0 to n we get

$$\sum_{k=0}^{n} (f(x^{k}) - f^{*})^{2} + C^{2} \|x^{n+1} - x^{*}\|^{2} \le C^{2} \|x^{0} - x^{*}\|^{2}.$$

for any $n \ge 0$, and in particular one can let $n \to \infty$.

3. We deduce that $f(x^k) \to f^*$. Show that there is one minimizer $x^* \in X^*$, such that $x^k \to x^*$.

We have seen that (x^k) is bounded so there exists x^* such that a subsequence (x^{k_l}) converges to x^* . Then, $f(x^{k_l}) \to f(x^*) = f^*$, so that x^* is a minimizer. Now, from the first question, we deduce that $||x^k - x^*||^2$ is a non-increasing sequence. (In particular it has a limit.) Since it goes to zero along the subsequence (k_l) , then it must go to zero so that $x^k \to x^*$.

4. We now assume that the function is " α -sharp", $\alpha \geq 1$, meaning that for some $\gamma > 0$,

$$f(x) - f^* \ge \gamma \operatorname{dist}(x, X^*)^{\alpha}.$$

Show that

dist
$$(x^{k+1}, X^*)^2 \le \text{dist} (x^k, X^*)^2 - \frac{\gamma^2 \text{dist} (x^k, X^*)^{2\alpha}}{C^2}$$
.

In case $\alpha = 1$ (which is the situation in the example mentioned in the introduction of this exercise), what do we deduce?

Let $x \in X^*$ be the projection of x^k on the solution set X^* (which is closed, convex) so that $||x^k - x|| = \text{dist}(x^k, X^*)$. Then:

$$\operatorname{dist} (x^{k+1}, X^*)^2 \le \|x^{k+1} - x\|^2 \le \|x^k - x\|^2 - \frac{(f(x^k) - f^*)^2}{C^2} \le \operatorname{dist} (x^k, X^*)^2 - \frac{\gamma^2 \operatorname{dist} (x^k, X^*)^{2\alpha}}{C^2}.$$

When $\alpha = 1$ this reduces to dist $(x^{k+1}, X^*)^2 \leq \text{dist}(x^k, X^*)^2(1 - \frac{\gamma^2}{C^2})$, one has a geometric (linear) convergence to the solution set (note that the actual convergence to x^* could be slower).

5. We consider a sequence a_k , $k \ge 0$, with for all $k \ge 0$, $a_k \ge 0$ and $a_{k+1} \le a_k - c^{-1}a_k^{1+\beta}$, $c > 0, \beta > 0$. Show that:

$$a_k \le \left(\frac{c}{\max\{\beta, 1\}(k+1)}\right)^{1/\beta}$$

Hint: introduce $b_k := a_k^{\beta}$, and depending on whether $\beta \ge 1$ or $\beta \le 1$, try to show that $b_k \le b_k - c'^{-1}b_k^2$ for some c' (depending on c, β). Use then the Lecture notes.

Since $a_k \leq a_k(1-c^{-1}a_k^\beta)$, we can write that $b_{k+1} \leq b_k(1-c^{-1}b_k)^\beta$. If $\beta \leq 1$, we use (concavity) that $(1-c^{-1}b_k)^\beta \leq 1-\beta c^{-1}b_k$. If $\beta \geq 1$, we use rather than $(1-c^{-1}b_k)^\beta \leq 1-c^{-1}b_k$. In both cases, we get

$$b_{k+1} \le b_k - \frac{\max\{\beta, 1\}}{c} b_k^2$$

and from Lemma 2.6 in the notes, we deduce $b_k \leq c/(\max\{\beta, 1\}(k+1))$. The conclusion follows.

6. Deduce the rate of convergence for the distance from x^k to the set X^* in case $\alpha > 1$. From the two previous questions, we deduce that

dist
$$(x^k, X^*)^2 \le \left(\frac{C^2}{\gamma^2 \max\{\alpha - 1, 1\}} \frac{1}{k+1}\right)^{\frac{1}{\alpha - 1}}$$
.