Continuous Optimization
Introduction a ’optimisation continue
Assessment
(4th January 2021)

1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:
L o |2)3/3;
2. x — 3x;
3. x+— (Az,x) /2 where x € R"™ and A is a symmetric, positive definite operator;

4. z— —\/rif £ >0, +oo if z < 0.

In general, we have f*(y) = sup,zy — f(x) and the sup is reached for y = f'(x), or z =
(f)~(y), if this makes sense (in the strictly convex case, it should since f’ is an increasing
function, invertible). For f(z) = |z|?/3, we write y = |z|z so that x = /|y|sign (y). We find
Fe(y) = 1yl = 1y*?/3 = (2/3)|y .

For f(z) = 3z, we can write that f(z) = sup,_syx, that is, f is the conjugate of the

characteristic function:
0 ify=3
6g3y(y) = {

+oo  else.
We find that f* = dy3y.

For f(z) = —y/x (x > 0) we can have y = f'(z) = —1/(2y/x) only if y < 0. Actually,
if y >0, yr + /x — 400 as x — +00, so that f*(y) = +oo. Otherwise, z = 1/(4y?) and
f(y) = =1/(4ly[) + 1/2ly]) = 1/(4lyl) = —1/(4y).

For f(x) = (Az,x) /2, z € R", we write

f*(y) = sup <y,l’> - <A.%',.ZL‘> /2

and since f is strongly convex the sup is reached at some point z, and one has y — Az = 0, that

is = A1y, We find that f*(y) = (A~ 1y,y) /2.

2. Evaluate y = prox, () for f(z) = |z|3/3, 7 > 0.
That is, we have to solve

Py =2

R BT
The minimizer satisfies 7|y|ly +y — x = 0, that is y(1 + 7|y|) = «. In particular y has the same
sign as x, and prox, ¢(—x) = —prox,¢(r). Hence we may assume that x > 0, and y > 0. We

solve 7y% + y — x = 0 which has a positive and a negative solution. We are interested only in
y Ty g

V1+4rz —1
27 '

the positive solution, it is



3. (More difficult) Evaluate the convex conjugate of the “Entropy” function:

Sorjxilng,  ifx; >0V, Yy, x =1,

S R" = [0,400] ; mb—>{
400 else,

where here by convention we let tInt = 0 when ¢ = 0. (Hint: introduce a Lagrange multiplier
for the constraint ), x; = 1.)
We have to compute, for y € R”,

S*(y) = sup Z Ty — i lnx;.
;20,5 2=1 i

At the maximum point = (which exists since = is in a compact set) one should have y; —
Inz; — 1 = X\ where A € R is the Lagrange multiplier. That is, x; = exp(y; — 1 — A). One
has >, x; = (1/exp(l + X)) > ,exp(y;) = 1 so that 1 + X = In)  exp(y;). (Incidentally,

zi = exp(y;)/ (3, exp(y;)).)
Then, we use ) . (x;y; — x;Inx; —x;) = A, x; to deduce that S*(y) = 1+ A. It follows

n

S*(y) =1n Z e

=1

(the “soft-max” or “log-sum-exp” function).

2. Convex analysis: Moreau-Yosida regularization

Given f : R™ —] — 00, 400] a convex, lower-semicontinuous function, which is proper (that is,
f > —oc and dom f # (), we recall that the Moreau-Yosida regularization of f with parameter
7 > 0 is given by:

. 1 2
fr(@) =min f(y) + —lly — =]
Y 2T
We recall that for any x, this problem has a unique minimizer y (because the function to
minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as

y = prox,¢(x), the “proximity operator” of 7f evaluated at x. In particular, f;(z) € R and
dom f; = R™. Further properties of the prox,; operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that f; is
convex, lower-semicontinuous.

The function f; is trivially convex as if z,2" € R" and t € [0,1], letting y = prox, (),
y' = prox, ;(z'), and y; = ty + (1 — t)y/,

Frlt + (1= 1)) < Fl) + o=l — (12 + (1= )

<) + (L= ) + by — ol + (1= )5y — )P
=tfr(z) + (1 —t)f-(a).



It is lower-semicontinous as the inf-convolution of a quadratic function and a convex, lower-
semicontinuous and proper function (Lemma 4.20 in the notes). This can be easily re-proved
in this particular, simpler case: if z, — x then since prox ; is 1-Lipschitz (see for instance
Thm 4.28), yp, := prox, ;(z,) — prox, ;(z) =: y and one has

1 .. 1 ..
f‘r(‘r) < f(y) + 27||y - 1:||2 < hmlnff(yn) + 7”3/11 - xn”2 = lim inf f‘r(xn)
T n—00 2T n—00

2. Let z € R™ and p € df;(x). Show that for any h € R™,

e (FEOY

T

(Hint: bound from below and above f,(z + th), for t > 0 small, then send ¢ to zero.)
Deduce that f. is differentiable at z, with V. f(z) = (z — prox,;(z))/7.
One has
fr(x+th) > fr(z) +tp-h

and for y = prox, (),

1 1 1 12
Frl@+th) < f) + o-llv+th =y = fv) + —llo —yl* +t-(z —y) - h+ b7
2T 2T T 2T
—f(x)—i—tl(x— ) h—i—ﬁh2
T T y or

Hence, combining both inequalities and dividing by ¢ > 0,

—_

t
2T

p-h<—(x—1vy) h+ —h?

\]

and letting ¢ — 0 we deduce the required inequality. Then, since this is true for any h, and in
particular for both h and —h, it is an equality, and it shows that p = (x — y)/7. In particular,
there is only a unique subgradient at each point which shows that f; is differentiable at  and

p =V (a)

3. Recall why prox,  is “firmly non-expansive”. Deduce that V f; is (1/7)-Lipschitz.
Thm 4.28 asserts that prox,; = (I +70f)~!is “firmly non-expansive” as the “resolvent” of
the maximal-monotone operator A = 79f. (We recall that by minimality, prox., ¥ (x) =y solves

Y=L L af(y) 30 & y= I +79f) " (2)

T

and is the resolvent of a maximal monotone operator.) This means that
lz = prox, j () — (2 — prox, p(«))[|* + [[prox, ;(x) — prox, ((«)|* < || — o||?

and in particular |7V f(z) — 7V fr(2)]| < ||l — 2|



4. Recall “Moreau’s” identity. Deduce that V f;(x) = proxi ;.(z/7) where f* is the convex
conjugate (Legendre-Fenchel transform) of f. .
This is in the notes:
T = prox, ¢(r) + TPIOX1 p. (%).

And the other identity follows from this and the previous results.

In what follows, **to simplify** we let 7 = 1.

5. Deduce from the previous results that for any z,
Vii(z) + V(fi(z) ==

(here (f*); is the Moreau-Yosida regularization with parameter 7 = 1 of the conjugate f* of f,
and not!! the conjugate of f1).
One has

Vii(z) + V(f)i(z) = (z — proxs(z)) + (z — prox . (r))
= x — [v — prox(r) — proxs. (v)] = z

thanks again to Moreau’s identity.

6. Therefore by integration one finds: fi(x) + (f*)1(x) = ||2]|*/2 + C for some constant C,
with C = f1(0) + (f*)1(0). Let y = prox;(0), z = prox.(0). Show that y = —z. Deduce that
C=0.

First, if y = prox;(0),z = prox.(0), with Moreau’s identity we have 0 = y + z, that is
y = —z. By definition, y + df(y) 2 0, that is, 2 = —y € df(y) and y € 0f*(z). In particular,
fly) + f*(2) =y -z = —|ly||” so that

=1

) ol ER
C = f1(0) + (f1)(0) + f(y) + 9

=5 + f*(z) =0.

3. Optimization: Nonlinear gradient descent

Let || - || be a norm on R™, possibly different from the standard Euclidean 2-norm: for instance,
lz| = > |ai| (the 1-norm), or ||z| = max{|zi],...,|zn|} (the co-norm). (A norm is any
convex, l-homogeneous, even, function with values in [0, +o0o[ and which is strictly positive
except in 0.) We define the dual (or polar) norm |ly|/« by the formula:

lyll« = sup y-z
z:|z||<1
where y - x is the standard dot product y-z = >_I" | y;x;. In particular, one has y -z < ||yl|«||z||
for all y,x. (The “right” point of view should be that y is in the dual E* of E = R™ (which is

also E* = R™) and that y - x is the evaluation of the linear form y at z. Then, | - || is the norm
on E while || - ||« is the norm on E*.)



1. Show that if F(z) := ||z||?/2, then its convex conjugate is F*(y) = ||y||?/2. Deduce that
the dual norm of || - ||, is || - ||, that is, for all x,

x| = sup y-z.
y:llyll« <1
One has
2 2
x t
F*(y) =supx -y — =] = sup T-y— —
. 2 0=t 2
t* t2 _ Jyll:
=sup [ sup oy )~ & =suptfyl. — & = 12
>0 \ 2:|ja]=t 2 >0 2 2
Hence in particular if we introduce the dual norm || - ||.«, the same computation will show

that F**(x) = ||z||2,/2. Since F is obviously convex, lsc., then F** = F so that |||/« = ||=]|.

2. Compute || - ||« in the following cases:

i lmorm: ||z| =370 |z ;

1
ii. 2-norm: ||z|| = (X0, |#:*)2 = Vo -z

(i) There are many ways to evaluate this dual norm, for instance one has:

n n n
E |zi| = E sup y;ir; = sup E Yii
i=1 i—1 lvil<1 lyi|<1Vi ;=
which shows that || - || is the dual norm of the norm y — max;—1 ., |y;|. We deduce that this is

also its dual norm.
(ii) For the 2-norm, we know that z -y < |z|llyll < 2] if |yl < 1, and choosing y = z/|lal,
we have equality, showing that || - ||« = || - ||

Now, we consider a function f whose differential is L-Lipschitz in the normed space E =
(R™,]| - ||), which means precisely that for any z, 2’ € R",

IVf(x) = V@@l < Lz — 2|

where Vf(z) € E* is the vector of partial derivatives (0f/0x;)} .
3. Show that, as in the Euclidean case, one has for x,2’ € F,

Fa) < f(@) + V@) - (@ = 2) + 2l — |



This follows as usual from

f(@') = f(z) + / Vi@t — ) - (o — 2)dt

= f(z) + Vf(x)- (ac’—x)—i-/ (Vf(z+t(a' — ) = Vf(z)) - (2" —z)dt

0

< f(@)+Vf(z) (@' —2) +/0 [Vf(@+ta — ) = V@), lla" - =|dt
< f($)+Vf(9C)~(fE/—J7)+L/(; [t(2" = @) |2 — || dt

= f(&) + Vi@)- (&' — o) + 2o’ — 2]

We want to define a “gradient descent” method in the norms || - ||, - [«. We choose 2° € E.
Given z¥, k > 0, we define ¥t = 2% — p¥ and we find the descent direction p* as follows: we
observe that

Pk < fa) — V() -+ P

Then, we choose a p* which minimizes the expression in the right-hand side of this equation.

4. Show that one has to choose p* € OF *(%V f*), and that one obtains, for such a choice:

1
Fa) < f@b) = =V f )2
2L
One has to find p* which minimizes

: L : . ,
min =V f(@")p+ S0 = —Lmax g9 (@) p" = F (") = —LF (V") = —5 VS )]
A minimizer satisfies 7V f(z*) — 0F(p¥) > 0, that is, $Vf(z¥) € OF(p*), or equivalently,
pF € OF (£V f(z)).

5. We assume the set X = {f < f(2°)} is bounded, and observe that 2* € X for any k > 1.
We also assume that f has a minimizer z* (obviously, * € X). As in the Lecture notes, show
that for all £ > 0:

(f(@*) = f(z"))?

2Lk~

FEMY) — f@¥) < f(@¥) - fa*) -

and:

where C = max,cy ||z — 2*|%.
See Lemma 2.6, Thm. 2.7 in the Lecture notes.



4. Optimization: Polyak’s subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent
method, which can be used whenever the optimal value of a problem is known. One consider
a convex function f : R™ — R (dom f = R™), which has a non empty set of minimizer(s) X*,
and we assume that the minimal value f* is known. For instance:
i
— x—b;
f(z) = max |a’ -z — b
where a’ € R™,b € RP are such that a’ -z =b;, i = 1,...,p has a solution: in that case f* = 0.
Then, one chooses 2 € R” and computes a subgradient descent method by picking for all
k>0, p* € 0f(a*) and

k+1 k f(ﬂck)—f* k

T =2 - "
P2

1. Show that, if z* € X* is any minimizer,

”xk—t—l _ x*HQ < ||CCk _ x*HQ o (f($k) — f*)2

[l
What do we deduce for the sequence (%)g>0?
We write:
kN _ e\ ok (k% kY _ £*%\2

%] |k |2

e () = 2
<l =l e

because simply, p* - (zF — 2*) > f(2F) — f(2*) since p* € Of(2*). In particular, the sequence of
iterates is bounded (and has converging subsequences).

oo
2. Why is it true that C := supy, [|p¥|| < +00? Deduce that Z(f(a:k) — f*)? < +oo.
k=0
The first question shows that ¥ is a bounded sequence. By assumption, f is convex, defined
on R™, so we know that it is locally Lipschitz, and its subgradients are locally bounded. This
shows that the supy ||p*|| must be finite.
Hence, letting C' > supy, |[p¥||, one finds

”xk’+1 o x*H2 + (f(xk) 7 f*)Q < kaJrl o :L,*HQ + (f(xk) — f*)2

k 2
c? 2 —

< [
and summing from k£ = 0 to n we get

n
S(F(F) = £+ Ol 2|2 < Ol - |,
k=0

for any n > 0, and in particular one can let n — oo.



3. We deduce that f(2*) — f*. Show that there is one minimizer z* € X*, such that z¥ — z*.

We have seen that (2*) is bounded so there exists #* such that a subsequence (z*) converges
to x*. Then, f(z*) — f(z*) = f*, so that 2* is a minimizer. Now, from the first question, we
deduce that [|z* —2*||? is a non-increasing sequence. (In particular it has a limit.) Since it goes
to zero along the subsequence (k;), then it must go to zero so that 2% — z*.

4. We now assume that the function is “a-sharp”, a > 1, meaning that for some v > 0,
f(@) = f* > Adist (2, X*)°
Show that
5 ldist (zF, X )2
— o .
In case @ = 1 (which is the situation in the example mentioned in the introduction of this
exercise), what do we deduce?

Let x € X* be the projection of 2* on the solution set X* (which is closed, convex) so that
|lz* — z|| = dist (¥, X*). Then:

dist (zF 1, X*)? < dist (2F, X*)

k )2 2 71: k *\ 2c0

(kL yR2 k12 ko2 (@) = f7) ok g2 ) -dist (2, XT)
dist (2", X*)? < ||2"T —z|* < [|2" — 2| e < dist (2", X*)* — o2 .
When o = 1 this reduces to dist (z*+1, X*)2 < dist (2%, X*)%(1 — 8—2), one has a geometric
(linear) convergence to the solution set (note that the actual convergence to x* could be slower).

5. We consider a sequence ag, k > 0, with for all £ > 0, ap > 0 and agy1 < ap — c‘la,ljﬁ,

¢ >0, > 0. Show that:

c 1/
< .
W= (max{ﬁ, 13k + 1))
Hint: introduce by := af , and depending on whether 8 > 1 or 8 < 1, try to show that
b < b, —¢ _lb% for some ¢’ (depending on ¢, 3). Use then the Lecture notes.
Since aj < ak(l—cflaf), we can write that by < br(1—c'b)5. If 8 < 1, we use (concavity)
that (1 —c'b;)? <1 — Bc b, If B> 1, we use rather than (1 — ¢ 'b;)? <1 — ¢ 'b;. In both
cases, we get

max{ 3,1
bpt1 < by — Eﬁ}bi

and from Lemma 2.6 in the notes, we deduce by, < ¢/(max{3,1}(k+1)). The conclusion follows.

6. Deduce the rate of convergence for the distance from z* to the set X* in case o > 1.
From the two previous questions, we deduce that

1
C? 1 a1
. k *\ 2
X7) < .
dist (27, X7)" < (72 max{a — 1,1} k + 1)




