# Continuous Optimization <br> Introduction à l'optimisation continue <br> Assessment <br> (4th January 2021) 

## 1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:
2. $x \mapsto|x|^{3} / 3$;
3. $x \mapsto 3 x$;
4. $x \mapsto\langle A x, x\rangle / 2$ where $x \in \mathbb{R}^{n}$ and $A$ is a symmetric, positive definite operator;
5. $x \mapsto-\sqrt{x}$ if $x \geq 0,+\infty$ if $x<0$.

In general, we have $f^{*}(y)=\sup _{y} x y-f(x)$ and the sup is reached for $y=f^{\prime}(x)$, or $x=$ $\left(f^{\prime}\right)^{-1}(y)$, if this makes sense (in the strictly convex case, it should since $f^{\prime}$ is an increasing function, invertible). For $f(x)=|x|^{3} / 3$, we write $y=|x| x$ so that $x=\sqrt{|y|} \operatorname{sign}(y)$. We find $f^{*}(y)=|y|^{3 / 2}-|y|^{3 / 2} / 3=(2 / 3)|y|^{3 / 2}$.

For $f(x)=3 x$, we can write that $f(x)=\sup _{y=3} y x$, that is, $f$ is the conjugate of the characteristic function:

$$
\delta_{\{3\}}(y)= \begin{cases}0 & \text { if } y=3 \\ +\infty & \text { else }\end{cases}
$$

We find that $f^{*}=\delta_{\{3\}}$.
For $f(x)=-\sqrt{x}(x \geq 0)$ we can have $y=f^{\prime}(x)=-1 /(2 \sqrt{x})$ only if $y<0$. Actually, if $y \geq 0, y x+\sqrt{x} \rightarrow+\infty$ as $x \rightarrow+\infty$, so that $f^{*}(y)=+\infty$. Otherwise, $x=1 /\left(4 y^{2}\right)$ and $f^{*}(y)=-1 /(4|y|)+1 /(2|y|)=1 /(4|y|)=-1 /(4 y)$.

For $f(x)=\langle A x, x\rangle / 2, x \in \mathbb{R}^{n}$, we write

$$
f^{*}(y)=\sup _{x}\langle y, x\rangle-\langle A x, x\rangle / 2
$$

and since $f$ is strongly convex the sup is reached at some point $x$, and one has $y-A x=0$, that is $x=A^{-1} y$. We find that $f^{*}(y)=\left\langle A^{-1} y, y\right\rangle / 2$.
2. Evaluate $y=\operatorname{prox}_{\tau f}(x)$ for $f(x)=|x|^{3} / 3, \tau>0$.

That is, we have to solve

$$
\min _{y} \frac{|y|^{3}}{3}+\frac{|y-x|^{2}}{2 \tau}
$$

The minimizer satisfies $\tau|y| y+y-x=0$, that is $y(1+\tau|y|)=x$. In particular $y$ has the same sign as $x$, and $\operatorname{prox}_{\tau f}(-x)=-\operatorname{prox}_{\tau f}(x)$. Hence we may assume that $x>0$, and $y>0$. We solve $\tau y^{2}+y-x=0$ which has a positive and a negative solution. We are interested only in the positive solution, it is

$$
y=\frac{\sqrt{1+4 \tau x}-1}{2 \tau}
$$

3. (More difficult) Evaluate the convex conjugate of the "Entropy" function:

$$
S: \mathbb{R}^{n} \rightarrow[0,+\infty] ; \quad x \mapsto \begin{cases}\sum_{i=1}^{n} x_{i} \ln x_{i} & \text { if } x_{i} \geq 0 \forall i, \sum_{i} x_{i}=1 \\ +\infty & \text { else }\end{cases}
$$

where here by convention we let $t \ln t=0$ when $t=0$. (Hint: introduce a Lagrange multiplier for the constraint $\sum_{i} x_{i}=1$.)

We have to compute, for $y \in \mathbb{R}^{n}$,

$$
S^{*}(y)=\sup _{x_{i} \geq 0, \sum_{i} x_{i}=1} \sum_{i} x_{i} y_{i}-x_{i} \ln x_{i} .
$$

At the maximum point $x$ (which exists since $x$ is in a compact set) one should have $y_{i}-$ $\ln x_{i}-1=\lambda$ where $\lambda \in \mathbb{R}$ is the Lagrange multiplier. That is, $x_{i}=\exp \left(y_{i}-1-\lambda\right)$. One has $\sum_{i} x_{i}=(1 / \exp (1+\lambda)) \sum_{i} \exp \left(y_{i}\right)=1$ so that $1+\lambda=\ln \sum_{i} \exp \left(y_{i}\right)$. (Incidentally, $x_{i}=\exp \left(y_{i}\right) /\left(\sum_{j} \exp \left(y_{j}\right)\right)$.)

Then, we use $\sum_{i}\left(x_{i} y_{i}-x_{i} \ln x_{i}-x_{i}\right)=\lambda \sum_{i} x_{i}$ to deduce that $S^{*}(y)=1+\lambda$. It follows

$$
S^{*}(y)=\ln \sum_{i=1}^{n} e^{y_{i}}
$$

(the "soft-max" or "log-sum-exp" function).

## 2. Convex analysis: Moreau-Yosida regularization

Given $\left.\left.f: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$ a convex, lower-semicontinuous function, which is proper (that is, $f>-\infty$ and dom $f \neq \emptyset$ ), we recall that the Moreau-Yosida regularization of $f$ with parameter $\tau>0$ is given by:

$$
f_{\tau}(x)=\min _{y} f(y)+\frac{1}{2 \tau}\|y-x\|^{2}
$$

We recall that for any $x$, this problem has a unique minimizer $y$ (because the function to minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as $y=\operatorname{prox}_{\tau f}(x)$, the "proximity operator" of $\tau f$ evaluated at $x$. In particular, $f_{\tau}(x) \in \mathbb{R}$ and $\operatorname{dom} f_{\tau}=\mathbb{R}^{n}$. Further properties of the $\operatorname{prox}_{\tau f}$ operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that $f_{\tau}$ is convex, lower-semicontinuous.

The function $f_{\tau}$ is trivially convex as if $x, x^{\prime} \in \mathbb{R}^{n}$ and $t \in[0,1]$, letting $y=\operatorname{prox}_{\tau f}(x)$, $y^{\prime}=\operatorname{prox}_{\tau f}\left(x^{\prime}\right)$, and $y_{t}=t y+(1-t) y^{\prime}$,

$$
\begin{aligned}
& f_{\tau}\left(t x+(1-t) x^{\prime}\right) \leq f\left(y_{t}\right)+\frac{1}{2 \tau}\left\|y_{t}-\left(t x+(1-t) x^{\prime}\right)\right\|^{2} \\
& \leq t f(y)+(1-t) f\left(y^{\prime}\right)+t \frac{1}{2 \tau}\|y-x\|^{2}+(1-t) \frac{1}{2 \tau}\left\|y^{\prime}-x^{\prime}\right\|^{2} \\
&=t f_{\tau}(x)+(1-t) f_{\tau}\left(x^{\prime}\right)
\end{aligned}
$$

It is lower-semicontinous as the inf-convolution of a quadratic function and a convex, lowersemicontinuous and proper function (Lemma 4.20 in the notes). This can be easily re-proved in this particular, simpler case: if $x_{n} \rightarrow x$ then since $\operatorname{prox}_{\tau f}$ is 1-Lipschitz (see for instance Thm 4.28), $y_{n}:=\operatorname{prox}_{\tau f}\left(x_{n}\right) \rightarrow \operatorname{prox}_{\tau f}(x)=: y$ and one has

$$
f_{\tau}(x) \leq f(y)+\frac{1}{2 \tau}\|y-x\|^{2} \leq \liminf _{n \rightarrow \infty} f\left(y_{n}\right)+\frac{1}{2 \tau}\left\|y_{n}-x_{n}\right\|^{2}=\liminf _{n \rightarrow \infty} f_{\tau}\left(x_{n}\right) .
$$

2. Let $x \in \mathbb{R}^{n}$ and $p \in \partial f_{\tau}(x)$. Show that for any $h \in \mathbb{R}^{n}$,

$$
p \cdot h \leq\left(\frac{x-\operatorname{prox}_{\tau f}(x)}{\tau}\right) \cdot h .
$$

(Hint: bound from below and above $f_{\tau}(x+t h)$, for $t>0$ small, then send $t$ to zero.)
Deduce that $f_{\tau}$ is differentiable at $x$, with $\nabla_{\tau} f(x)=\left(x-\operatorname{prox}_{\tau f}(x)\right) / \tau$.
One has

$$
f_{\tau}(x+t h) \geq f_{\tau}(x)+t p \cdot h
$$

and for $y=\operatorname{prox}_{\tau f}(x)$,

$$
\begin{aligned}
f_{\tau}(x+t h) \leq f(y)+\frac{1}{2 \tau}\|x+t h-y\|^{2}=f(y)+\frac{1}{2 \tau}\|x-y\|^{2} & +t \frac{1}{\tau}(x-y) \cdot h+\frac{t^{2}}{2 \tau} h^{2} \\
& =f_{\tau}(x)+t \frac{1}{\tau}(x-y) \cdot h+\frac{t^{2}}{2 \tau} h^{2} .
\end{aligned}
$$

Hence, combining both inequalities and dividing by $t>0$,

$$
p \cdot h \leq \frac{1}{\tau}(x-y) \cdot h+\frac{t}{2 \tau} h^{2}
$$

and letting $t \rightarrow 0$ we deduce the required inequality. Then, since this is true for any $h$, and in particular for both $h$ and $-h$, it is an equality, and it shows that $p=(x-y) / \tau$. In particular, there is only a unique subgradient at each point which shows that $f_{\tau}$ is differentiable at $x$ and $p=\nabla f_{\tau}(x)$.
3. Recall why $\operatorname{prox}_{\tau f}$ is "firmly non-expansive". Deduce that $\nabla f_{\tau}$ is $(1 / \tau)$-Lipschitz.

Thm 4.28 asserts that $\operatorname{prox}_{\tau f}=(I+\tau \partial f)^{-1}$ is "firmly non-expansive" as the "resolvent" of the maximal-monotone operator $A=\tau \partial f$. (We recall that by minimality, $\operatorname{prox}_{\tau f}(x)=y$ solves

$$
\frac{y-x}{\tau}+\partial f(y) \ni 0 \Leftrightarrow y=(I+\tau \partial f)^{-1}(x)
$$

and is the resolvent of a maximal monotone operator.) This means that

$$
\left\|x-\operatorname{prox}_{\tau f}(x)-\left(x^{\prime}-\operatorname{prox}_{\tau f}\left(x^{\prime}\right)\right)\right\|^{2}+\left\|\operatorname{prox}_{\tau f}(x)-\operatorname{prox}_{\tau f}\left(x^{\prime}\right)\right\|^{2} \leq\left\|x-x^{\prime}\right\|^{2}
$$

and in particular $\left\|\tau \nabla f_{\tau}(x)-\tau \nabla f_{\tau}\left(x^{\prime}\right)\right\| \leq\left\|x-x^{\prime}\right\|$.
4. Recall "Moreau's" identity. Deduce that $\nabla f_{\tau}(x)=\operatorname{prox}_{\frac{1}{\tau} f^{*}}(x / \tau)$ where $f^{*}$ is the convex conjugate (Legendre-Fenchel transform) of $f$.

This is in the notes:

$$
x=\operatorname{prox}_{\tau f}(x)+\tau \operatorname{prox}_{\frac{1}{\tau} f^{*}}\left(\frac{x}{\tau}\right)
$$

And the other identity follows from this and the previous results.
In what follows, ${ }^{* *}$ to simplify ${ }^{* *}$ we let $\tau=1$.
5. Deduce from the previous results that for any $x$,

$$
\nabla f_{1}(x)+\nabla\left(f^{*}\right)_{1}(x)=x
$$

(here $\left(f^{*}\right)_{1}$ is the Moreau-Yosida regularization with parameter $\tau=1$ of the conjugate $f^{*}$ of $f$, and not!! the conjugate of $f_{1}$ ).

One has

$$
\begin{aligned}
& \nabla f_{1}(x)+\nabla\left(f^{*}\right)_{1}(x)=\left(x-\operatorname{prox}_{f}(x)\right)+\left(x-\operatorname{prox}_{f^{*}}(x)\right) \\
&=x-\left[x-\operatorname{prox}_{f}(x)-\operatorname{prox}_{f^{*}}(x)\right]=x
\end{aligned}
$$

thanks again to Moreau's identity.
6. Therefore by integration one finds: $f_{1}(x)+\left(f^{*}\right)_{1}(x)=\|x\|^{2} / 2+C$ for some constant $C$, with $C=f_{1}(0)+\left(f^{*}\right)_{1}(0)$. Let $y=\operatorname{prox}_{f}(0), z=\operatorname{prox}_{f^{*}}(0)$. Show that $y=-z$. Deduce that $C=0$.

First, if $y=\operatorname{prox}_{f}(0), z=\operatorname{prox}_{f^{*}}(0)$, with Moreau's identity we have $0=y+z$, that is $y=-z$. By definition, $y+\partial f(y) \ni 0$, that is, $z=-y \in \partial f(y)$ and $y \in \partial f^{*}(z)$. In particular, $f(y)+f^{*}(z)=y \cdot z=-\|y\|^{2}$ so that

$$
C=f_{1}(0)+\left(f_{1}^{*}\right)(0)=\frac{\|y\|^{2}}{2}+f(y)+\frac{\|z\|^{2}}{2}+f^{*}(z)=0
$$

## 3. Optimization: Nonlinear gradient descent

Let $\|\cdot\|$ be a norm on $\mathbb{R}^{n}$, possibly different from the standard Euclidean 2-norm: for instance, $\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|$ (the 1-norm), or $\|x\|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$ (the $\infty$-norm). (A norm is any convex, 1-homogeneous, even, function with values in $[0,+\infty[$ and which is strictly positive except in 0 .) We define the dual (or polar) norm $\|y\|_{*}$ by the formula:

$$
\|y\|_{*}=\sup _{x:\|x\| \leq 1} y \cdot x
$$

where $y \cdot x$ is the standard dot product $y \cdot x=\sum_{i=1}^{n} y_{i} x_{i}$. In particular, one has $y \cdot x \leq\|y\|_{*}\|x\|$ for all $y, x$. (The "right" point of view should be that $y$ is in the dual $E^{*}$ of $E=\mathbb{R}^{n}$ (which is also $E^{*}=\mathbb{R}^{n}$ ) and that $y \cdot x$ is the evaluation of the linear form $y$ at $x$. Then, $\|\cdot\|$ is the norm on $E$ while $\|\cdot\|_{*}$ is the norm on $E^{*}$.)

1. Show that if $\mathcal{F}(x):=\|x\|^{2} / 2$, then its convex conjugate is $\mathcal{F}^{*}(y)=\|y\|_{*}^{2} / 2$. Deduce that the dual norm of $\|\cdot\|_{*}$ is $\|\cdot\|$, that is, for all $x$,

$$
\|x\|=\sup _{y:\|y\|_{*} \leq 1} y \cdot x .
$$

One has

$$
\begin{aligned}
& \mathcal{F}^{*}(y)=\sup _{x} x \cdot y-\frac{\|x\|^{2}}{2}=\sup _{t \geq 0,\|x\|=t} x \cdot y-\frac{t^{2}}{2} \\
&=\sup _{t \geq 0}\left(\sup _{x:\|x\|=t} x \cdot y\right)-\frac{t^{2}}{2}=\sup _{t \geq 0} t\|y\|_{*}-\frac{t^{2}}{2}=\frac{\|y\|_{*}^{2}}{2} .
\end{aligned}
$$

Hence in particular if we introduce the dual norm $\|\cdot\|_{* *}$, the same computation will show that $\mathcal{F}^{* *}(x)=\|x\|_{* *}^{2} / 2$. Since $\mathcal{F}$ is obviously convex, lsc., then $\mathcal{F}^{* *}=\mathcal{F}$ so that $\|x\|_{* *}=\|x\|$.
2. Compute $\|\cdot\|_{*}$ in the following cases:
i. 1-norm: $\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|$;
ii. 2-norm: $\|x\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}=\sqrt{x \cdot x}$.
(i) There are many ways to evaluate this dual norm, for instance one has:

$$
\sum_{i=1}^{n}\left|x_{i}\right|=\sum_{i=1}^{n} \sup _{\mid y_{i} \leq 1} y_{i} x_{i}=\sup _{\left|y_{i}\right| \leq 1 \forall i} \sum_{i=1}^{n} y_{i} x_{i}
$$

which shows that $\|\cdot\|$ is the dual norm of the norm $y \mapsto \max _{i=1, \ldots n}\left|y_{i}\right|$. We deduce that this is also its dual norm.
(ii) For the 2-norm, we know that $x \cdot y \leq\|x\|\|y\| \leq\|x\|$ if $\|y\| \leq 1$, and choosing $y=x /\|x\|$, we have equality, showing that $\|\cdot\|_{*}=\|\cdot\|$.

Now, we consider a function $f$ whose differential is $L$-Lipschitz in the normed space $E=$ $\left(\mathbb{R}^{n},\|\cdot\|\right)$, which means precisely that for any $x, x^{\prime} \in \mathbb{R}^{n}$,

$$
\left\|\nabla f(x)-\nabla f\left(x^{\prime}\right)\right\|_{*} \leq L\left\|x-x^{\prime}\right\|
$$

where $\nabla f(x) \in E^{*}$ is the vector of partial derivatives $\left(\partial f / \partial x_{i}\right)_{i=1}^{n}$.
3. Show that, as in the Euclidean case, one has for $x, x^{\prime} \in E$,

$$
f\left(x^{\prime}\right) \leq f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right)+\frac{L}{2}\left\|x-x^{\prime}\right\|^{2} .
$$

This follows as usual from

$$
\begin{aligned}
& f\left(x^{\prime}\right)=f(x)+\int_{0}^{1} \nabla f\left(x+t\left(x^{\prime}-x\right)\right) \cdot\left(x^{\prime}-x\right) d t \\
& =f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right)+\int_{0}^{1}\left(\nabla f\left(x+t\left(x^{\prime}-x\right)\right)-\nabla f(x)\right) \cdot\left(x^{\prime}-x\right) d t \\
& \leq f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right)+\int_{0}^{1}\left\|\nabla f\left(x+t\left(x^{\prime}-x\right)\right)-\nabla f(x)\right\|_{*}\left\|x^{\prime}-x\right\| d t \\
& \leq f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right)+L \int_{0}^{1}\left\|t\left(x^{\prime}-x\right)\right\|\left\|x^{\prime}-x\right\| d t \\
& \quad=f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right)+\frac{L}{2}\left\|x^{\prime}-x\right\|^{2}
\end{aligned}
$$

We want to define a "gradient descent" method in the norms $\|\cdot\|,\|\cdot\|_{*}$. We choose $x^{0} \in E$. Given $x^{k}, k \geq 0$, we define $x^{k+1}=x^{k}-p^{k}$ and we find the descent direction $p^{k}$ as follows: we observe that

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\nabla f\left(x^{k}\right) \cdot p^{k}+\frac{L}{2}\left\|p^{k}\right\|^{2} .
$$

Then, we choose a $p^{k}$ which minimizes the expression in the right-hand side of this equation.
4. Show that one has to choose $p^{k} \in \partial \mathcal{F}^{*}\left(\frac{1}{L} \nabla f^{*}\right)$, and that one obtains, for such a choice:

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x^{k}\right)\right\|_{*}^{2} .
$$

One has to find $p^{k}$ which minimizes $\min _{p^{k}}-\nabla f\left(x^{k}\right) \cdot p^{k}+\frac{L}{2}\left\|p^{k}\right\|^{2}=-L \max _{p^{k}} \frac{1}{L} \nabla f\left(x^{k}\right) \cdot p^{k}-\mathcal{F}\left(p^{k}\right)=-L \mathcal{F}^{*}\left(\frac{1}{L} \nabla f\left(x^{k}\right)\right)=-\frac{1}{2 L}\left\|\nabla f\left(x^{k}\right)\right\|_{*}^{2}$.
A minimizer satisfies $\frac{1}{L} \nabla f\left(x^{k}\right)-\partial \mathcal{F}\left(p^{k}\right) \ni 0$, that is, $\frac{1}{L} \nabla f\left(x^{k}\right) \in \partial \mathcal{F}\left(p^{k}\right)$, or equivalently, $p^{k} \in \partial \mathcal{F}^{*}\left(\frac{1}{L} \nabla f\left(x^{k}\right)\right)$.
5. We assume the set $X=\left\{f \leq f\left(x^{0}\right)\right\}$ is bounded, and observe that $x^{k} \in X$ for any $k \geq 1$. We also assume that $f$ has a minimizer $x^{*}$ (obviously, $x^{*} \in X$ ). As in the Lecture notes, show that for all $k \geq 0$ :

$$
f\left(x^{k+1}\right)-f\left(x^{*}\right) \leq f\left(x^{k}\right)-f\left(x^{*}\right)-\frac{\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)^{2}}{2 L\left\|x^{k}-x^{*}\right\|^{2}},
$$

and:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{2 L C}{k+1}
$$

where $C=\max _{x \in X}\left\|x-x^{*}\right\|^{2}$.
See Lemma 2.6, Thm. 2.7 in the Lecture notes.

## 4. Optimization: Polyak's subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent method, which can be used whenever the optimal value of a problem is known. One consider a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}\left(\operatorname{dom} f=\mathbb{R}^{n}\right)$, which has a non empty set of minimizer(s) $X^{*}$, and we assume that the minimal value $f^{*}$ is known. For instance:

$$
f(x)=\max _{1 \leq i \leq p}\left|a^{i} \cdot x-b_{i}\right|
$$

where $a^{i} \in \mathbb{R}^{n}, b \in \mathbb{R}^{p}$ are such that $a^{i} \cdot x=b_{i}, i=1, \ldots, p$ has a solution: in that case $f^{*}=0$.
Then, one chooses $x^{0} \in \mathbb{R}^{n}$ and computes a subgradient descent method by picking for all $k \geq 0, p^{k} \in \partial f\left(x^{k}\right)$ and

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)-f^{*}}{\left\|p^{k}\right\|^{2}} p^{k} .
$$

1. Show that, if $x^{*} \in X^{*}$ is any minimizer,

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{\left\|p^{k}\right\|^{2}}
$$

What do we deduce for the sequence $\left(x^{k}\right)_{k \geq 0}$ ?
We write:

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|^{2}=\left\|x^{k}-x^{*}\right\|^{2}-2 \frac{\left(f\left(x^{k}\right)-f^{*}\right) p^{k} \cdot\left(x^{k}-x^{*}\right)}{\left\|p^{k}\right\|^{2}}+ & \frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{\left\|p^{k}\right\|^{2}} \\
& \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{\left\|p^{k}\right\|^{2}} .
\end{aligned}
$$

because simply, $p^{k} \cdot\left(x^{k}-x^{*}\right) \geq f\left(x^{k}\right)-f\left(x^{*}\right)$ since $p^{k} \in \partial f\left(x^{k}\right)$. In particular, the sequence of iterates is bounded (and has converging subsequences).
2. Why is it true that $C:=\sup _{k}\left\|p^{k}\right\|<+\infty$ ? Deduce that $\sum_{k=0}^{\infty}\left(f\left(x^{k}\right)-f^{*}\right)^{2}<+\infty$.

The first question shows that $x^{k}$ is a bounded sequence. By assumption, $f$ is convex, defined on $\mathbb{R}^{n}$, so we know that it is locally Lipschitz, and its subgradients are locally bounded. This shows that the $\sup _{k}\left\|p^{k}\right\|$ must be finite.

Hence, letting $C \geq \sup _{k}\left\|p^{k}\right\|$, one finds

$$
\left\|x^{k+1}-x^{*}\right\|^{2}+\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{C^{2}} \leq\left\|x^{k+1}-x^{*}\right\|^{2}+\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{\left\|p^{k}\right\|^{2}} \leq\left\|x^{k}-x^{*}\right\|^{2}
$$

and summing from $k=0$ to $n$ we get

$$
\sum_{k=0}^{n}\left(f\left(x^{k}\right)-f^{*}\right)^{2}+C^{2}\left\|x^{n+1}-x^{*}\right\|^{2} \leq C^{2}\left\|x^{0}-x^{*}\right\|^{2}
$$

for any $n \geq 0$, and in particular one can let $n \rightarrow \infty$.
3. We deduce that $f\left(x^{k}\right) \rightarrow f^{*}$. Show that there is one minimizer $x^{*} \in X^{*}$, such that $x^{k} \rightarrow x^{*}$. We have seen that $\left(x^{k}\right)$ is bounded so there exists $x^{*}$ such that a subsequence $\left(x^{k_{l}}\right)$ converges to $x^{*}$. Then, $f\left(x^{k_{l}}\right) \rightarrow f\left(x^{*}\right)=f^{*}$, so that $x^{*}$ is a minimizer. Now, from the first question, we deduce that $\left\|x^{k}-x^{*}\right\|^{2}$ is a non-increasing sequence. (In particular it has a limit.) Since it goes to zero along the subsequence $\left(k_{l}\right)$, then it must go to zero so that $x^{k} \rightarrow x^{*}$.
4. We now assume that the function is " $\alpha$-sharp", $\alpha \geq 1$, meaning that for some $\gamma>0$,

$$
f(x)-f^{*} \geq \gamma \operatorname{dist}\left(x, X^{*}\right)^{\alpha}
$$

Show that

$$
\operatorname{dist}\left(x^{k+1}, X^{*}\right)^{2} \leq \operatorname{dist}\left(x^{k}, X^{*}\right)^{2}-\frac{\gamma^{2} \operatorname{dist}\left(x^{k}, X^{*}\right)^{2 \alpha}}{C^{2}}
$$

In case $\alpha=1$ (which is the situation in the example mentioned in the introduction of this exercise), what do we deduce?

Let $x \in X^{*}$ be the projection of $x^{k}$ on the solution set $X^{*}$ (which is closed, convex) so that $\left\|x^{k}-x\right\|=\operatorname{dist}\left(x^{k}, X^{*}\right)$. Then:
$\operatorname{dist}\left(x^{k+1}, X^{*}\right)^{2} \leq\left\|x^{k+1}-x\right\|^{2} \leq\left\|x^{k}-x\right\|^{2}-\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{C^{2}} \leq \operatorname{dist}\left(x^{k}, X^{*}\right)^{2}-\frac{\gamma^{2} \operatorname{dist}\left(x^{k}, X^{*}\right)^{2 \alpha}}{C^{2}}$.
When $\alpha=1$ this reduces to $\operatorname{dist}\left(x^{k+1}, X^{*}\right)^{2} \leq \operatorname{dist}\left(x^{k}, X^{*}\right)^{2}\left(1-\frac{\gamma^{2}}{C^{2}}\right)$, one has a geometric (linear) convergence to the solution set (note that the actual convergence to $x^{*}$ could be slower).
5. We consider a sequence $a_{k}, k \geq 0$, with for all $k \geq 0, a_{k} \geq 0$ and $a_{k+1} \leq a_{k}-c^{-1} a_{k}^{1+\beta}$, $c>0, \beta>0$. Show that:

$$
a_{k} \leq\left(\frac{c}{\max \{\beta, 1\}(k+1)}\right)^{1 / \beta}
$$

Hint: introduce $b_{k}:=a_{k}^{\beta}$, and depending on whether $\beta \geq 1$ or $\beta \leq 1$, try to show that $b_{k} \leq b_{k}-c^{\prime-1} b_{k}^{2}$ for some $c^{\prime}$ (depending on $c, \beta$ ). Use then the Lecture notes.

Since $a_{k} \leq a_{k}\left(1-c^{-1} a_{k}^{\beta}\right)$, we can write that $b_{k+1} \leq b_{k}\left(1-c^{-1} b_{k}\right)^{\beta}$. If $\beta \leq 1$, we use (concavity) that $\left(1-c^{-1} b_{k}\right)^{\beta} \leq 1-\beta c^{-1} b_{k}$. If $\beta \geq 1$, we use rather than $\left(1-c^{-1} b_{k}\right)^{\beta} \leq 1-c^{-1} b_{k}$. In both cases, we get

$$
b_{k+1} \leq b_{k}-\frac{\max \{\beta, 1\}}{c} b_{k}^{2}
$$

and from Lemma 2.6 in the notes, we deduce $b_{k} \leq c /(\max \{\beta, 1\}(k+1))$. The conclusion follows.
6. Deduce the rate of convergence for the distance from $x^{k}$ to the set $X^{*}$ in case $\alpha>1$. From the two previous questions, we deduce that

$$
\operatorname{dist}\left(x^{k}, X^{*}\right)^{2} \leq\left(\frac{C^{2}}{\gamma^{2} \max \{\alpha-1,1\}} \frac{1}{k+1}\right)^{\frac{1}{\alpha-1}}
$$

