
Continuous Optimization
Introduction à l’optimisation continue

Assessment
(4th January 2021)

1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:

1. x 7→ |x|3/3;

2. x 7→ 3x;

3. x 7→ 〈Ax, x〉 /2 where x ∈ Rn and A is a symmetric, positive definite operator;

4. x 7→ −
√
x if x ≥ 0, +∞ if x < 0.

In general, we have f∗(y) = supy xy − f(x) and the sup is reached for y = f ′(x), or x =
(f ′)−1(y), if this makes sense (in the strictly convex case, it should since f ′ is an increasing
function, invertible). For f(x) = |x|3/3, we write y = |x|x so that x =

√
|y|sign (y). We find

f∗(y) = |y|3/2 − |y|3/2/3 = (2/3)|y|3/2.
For f(x) = 3x, we can write that f(x) = supy=3 yx, that is, f is the conjugate of the

characteristic function:

δ{3}(y) =

{
0 if y = 3

+∞ else.

We find that f∗ = δ{3}.
For f(x) = −

√
x (x ≥ 0) we can have y = f ′(x) = −1/(2

√
x) only if y < 0. Actually,

if y ≥ 0, yx +
√
x → +∞ as x → +∞, so that f∗(y) = +∞. Otherwise, x = 1/(4y2) and

f∗(y) = −1/(4|y|) + 1/(2|y|) = 1/(4|y|) = −1/(4y).
For f(x) = 〈Ax, x〉 /2, x ∈ Rn, we write

f∗(y) = sup
x
〈y, x〉 − 〈Ax, x〉 /2

and since f is strongly convex the sup is reached at some point x, and one has y−Ax = 0, that
is x = A−1y. We find that f∗(y) =

〈
A−1y, y

〉
/2.

2. Evaluate y = proxτf (x) for f(x) = |x|3/3, τ > 0.
That is, we have to solve

min
y

|y|3

3
+
|y − x|2

2τ
.

The minimizer satisfies τ |y|y + y − x = 0, that is y(1 + τ |y|) = x. In particular y has the same
sign as x, and proxτf (−x) = −proxτf (x). Hence we may assume that x > 0, and y > 0. We
solve τy2 + y − x = 0 which has a positive and a negative solution. We are interested only in
the positive solution, it is

y =

√
1 + 4τx− 1

2τ
.
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3. (More difficult) Evaluate the convex conjugate of the “Entropy” function:

S : Rn → [0,+∞] ; x 7→

{∑n
i=1 xi lnxi if xi ≥ 0 ∀i,

∑
i xi = 1 ,

+∞ else,

where here by convention we let t ln t = 0 when t = 0. (Hint: introduce a Lagrange multiplier
for the constraint

∑
i xi = 1.)

We have to compute, for y ∈ Rn,

S∗(y) = sup
xi≥0,

∑
i xi=1

∑
i

xiyi − xi lnxi.

At the maximum point x (which exists since x is in a compact set) one should have yi −
lnxi − 1 = λ where λ ∈ R is the Lagrange multiplier. That is, xi = exp(yi − 1 − λ). One
has

∑
i xi = (1/ exp(1 + λ))

∑
i exp(yi) = 1 so that 1 + λ = ln

∑
i exp(yi). (Incidentally,

xi = exp(yi)/(
∑

j exp(yj)).)
Then, we use

∑
i(xiyi − xi lnxi − xi) = λ

∑
i xi to deduce that S∗(y) = 1 + λ. It follows

S∗(y) = ln
n∑
i=1

eyi

(the “soft-max” or “log-sum-exp” function).

2. Convex analysis: Moreau-Yosida regularization

Given f : Rn →] −∞,+∞] a convex, lower-semicontinuous function, which is proper (that is,
f > −∞ and dom f 6= ∅), we recall that the Moreau-Yosida regularization of f with parameter
τ > 0 is given by:

fτ (x) = min
y
f(y) +

1

2τ
‖y − x‖2

We recall that for any x, this problem has a unique minimizer y (because the function to
minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as
y = proxτf (x), the “proximity operator” of τf evaluated at x. In particular, fτ (x) ∈ R and
dom fτ = Rn. Further properties of the proxτf operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that fτ is
convex, lower-semicontinuous.

The function fτ is trivially convex as if x, x′ ∈ Rn and t ∈ [0, 1], letting y = proxτf (x),
y′ = proxτf (x′), and yt = ty + (1− t)y′,

fτ (tx+ (1− t)x′) ≤ f(yt) +
1

2τ
‖yt − (tx+ (1− t)x′)‖2

≤ tf(y) + (1− t)f(y′) + t
1

2τ
‖y − x‖2 + (1− t) 1

2τ
‖y′ − x′‖2

= tfτ (x) + (1− t)fτ (x′).
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It is lower-semicontinous as the inf-convolution of a quadratic function and a convex, lower-
semicontinuous and proper function (Lemma 4.20 in the notes). This can be easily re-proved
in this particular, simpler case: if xn → x then since proxτf is 1-Lipschitz (see for instance
Thm 4.28), yn := proxτf (xn)→ proxτf (x) =: y and one has

fτ (x) ≤ f(y) +
1

2τ
‖y − x‖2 ≤ lim inf

n→∞
f(yn) +

1

2τ
‖yn − xn‖2 = lim inf

n→∞
fτ (xn).

2. Let x ∈ Rn and p ∈ ∂fτ (x). Show that for any h ∈ Rn,

p · h ≤
(
x− proxτf (x)

τ

)
· h.

(Hint: bound from below and above fτ (x+ th), for t > 0 small, then send t to zero.)
Deduce that fτ is differentiable at x, with ∇τf(x) = (x− proxτf (x))/τ .

One has
fτ (x+ th) ≥ fτ (x) + tp · h

and for y = proxτf (x),

fτ (x+ th) ≤ f(y) +
1

2τ
‖x+ th− y‖2 = f(y) +

1

2τ
‖x− y‖2 + t

1

τ
(x− y) · h+

t2

2τ
h2

= fτ (x) + t
1

τ
(x− y) · h+

t2

2τ
h2.

Hence, combining both inequalities and dividing by t > 0,

p · h ≤ 1

τ
(x− y) · h+

t

2τ
h2

and letting t→ 0 we deduce the required inequality. Then, since this is true for any h, and in
particular for both h and −h, it is an equality, and it shows that p = (x− y)/τ . In particular,
there is only a unique subgradient at each point which shows that fτ is differentiable at x and
p = ∇fτ (x).

3. Recall why proxτf is “firmly non-expansive”. Deduce that ∇fτ is (1/τ)-Lipschitz.
Thm 4.28 asserts that proxτf = (I + τ∂f)−1 is “firmly non-expansive” as the “resolvent” of

the maximal-monotone operator A = τ∂f . (We recall that by minimality, proxτf (x) = y solves

y − x
τ

+ ∂f(y) 3 0 ⇔ y = (I + τ∂f)−1(x)

and is the resolvent of a maximal monotone operator.) This means that

‖x− proxτf (x)− (x′ − proxτf (x′))‖2 + ‖proxτf (x)− proxτf (x′)‖2 ≤ ‖x− x′‖2

and in particular ‖τ∇fτ (x)− τ∇fτ (x′)‖ ≤ ‖x− x′‖.
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4. Recall “Moreau’s” identity. Deduce that ∇fτ (x) = prox 1
τ
f∗(x/τ) where f∗ is the convex

conjugate (Legendre-Fenchel transform) of f .
This is in the notes:

x = proxτf (x) + τprox 1
τ
f∗(xτ ).

And the other identity follows from this and the previous results.

In what follows, **to simplify** we let τ = 1.

5. Deduce from the previous results that for any x,

∇f1(x) +∇(f∗)1(x) = x

(here (f∗)1 is the Moreau-Yosida regularization with parameter τ = 1 of the conjugate f∗ of f ,
and not!! the conjugate of f1).

One has

∇f1(x) +∇(f∗)1(x) = (x− proxf (x)) + (x− proxf∗(x))

= x− [x− proxf (x)− proxf∗(x)] = x

thanks again to Moreau’s identity.

6. Therefore by integration one finds: f1(x) + (f∗)1(x) = ‖x‖2/2 + C for some constant C,
with C = f1(0) + (f∗)1(0). Let y = proxf (0), z = proxf∗(0). Show that y = −z. Deduce that
C = 0.

First, if y = proxf (0), z = proxf∗(0), with Moreau’s identity we have 0 = y + z, that is
y = −z. By definition, y + ∂f(y) 3 0, that is, z = −y ∈ ∂f(y) and y ∈ ∂f∗(z). In particular,
f(y) + f∗(z) = y · z = −‖y‖2 so that

C = f1(0) + (f∗1 )(0) =
‖y‖2

2
+ f(y) +

‖z‖2

2
+ f∗(z) = 0.

3. Optimization: Nonlinear gradient descent

Let ‖ · ‖ be a norm on Rn, possibly different from the standard Euclidean 2-norm: for instance,
‖x‖ =

∑n
i=1 |xi| (the 1-norm), or ‖x‖ = max{|x1|, . . . , |xn|} (the ∞-norm). (A norm is any

convex, 1-homogeneous, even, function with values in [0,+∞[ and which is strictly positive
except in 0.) We define the dual (or polar) norm ‖y‖∗ by the formula:

‖y‖∗ = sup
x:‖x‖≤1

y · x

where y ·x is the standard dot product y ·x =
∑n

i=1 yixi. In particular, one has y ·x ≤ ‖y‖∗‖x‖
for all y, x. (The “right” point of view should be that y is in the dual E∗ of E = Rn (which is
also E∗ = Rn) and that y · x is the evaluation of the linear form y at x. Then, ‖ · ‖ is the norm
on E while ‖ · ‖∗ is the norm on E∗.)
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1. Show that if F(x) := ‖x‖2/2, then its convex conjugate is F∗(y) = ‖y‖2∗/2. Deduce that
the dual norm of ‖ · ‖∗ is ‖ · ‖, that is, for all x,

‖x‖ = sup
y:‖y‖∗≤1

y · x.

One has

F∗(y) = sup
x
x · y − ‖x‖

2

2
= sup

t≥0,‖x‖=t
x · y − t2

2

= sup
t≥0

(
sup

x:‖x‖=t
x · y

)
− t2

2
= sup

t≥0
t‖y‖∗ −

t2

2
=
‖y‖2∗

2
.

Hence in particular if we introduce the dual norm ‖ · ‖∗∗, the same computation will show
that F∗∗(x) = ‖x‖2∗∗/2. Since F is obviously convex, lsc., then F∗∗ = F so that ‖x‖∗∗ = ‖x‖.

2. Compute ‖ · ‖∗ in the following cases:

i. 1-norm: ‖x‖ =
∑n

i=1 |xi| ;

ii. 2-norm: ‖x‖ =
(∑n

i=1 |xi|2
) 1

2 =
√
x · x.

(i) There are many ways to evaluate this dual norm, for instance one has:

n∑
i=1

|xi| =
n∑
i=1

sup
|yi|≤1

yixi = sup
|yi|≤1 ∀i

n∑
i=1

yixi

which shows that ‖ · ‖ is the dual norm of the norm y 7→ maxi=1,...n |yi|. We deduce that this is
also its dual norm.

(ii) For the 2-norm, we know that x · y ≤ ‖x‖‖y‖ ≤ ‖x‖ if ‖y‖ ≤ 1, and choosing y = x/‖x‖,
we have equality, showing that ‖ · ‖∗ = ‖ · ‖.

Now, we consider a function f whose differential is L-Lipschitz in the normed space E =
(Rn, ‖ · ‖), which means precisely that for any x, x′ ∈ Rn,

‖∇f(x)−∇f(x′)‖∗ ≤ L‖x− x′‖

where ∇f(x) ∈ E∗ is the vector of partial derivatives (∂f/∂xi)
n
i=1.

3. Show that, as in the Euclidean case, one has for x, x′ ∈ E,

f(x′) ≤ f(x) +∇f(x) · (x′ − x) +
L

2
‖x− x′‖2.
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This follows as usual from

f(x′) = f(x) +

∫ 1

0
∇f(x+ t(x′ − x)) · (x′ − x)dt

= f(x) +∇f(x) · (x′ − x) +

∫ 1

0

(
∇f(x+ t(x′ − x))−∇f(x)

)
· (x′ − x)dt

≤ f(x) +∇f(x) · (x′ − x) +

∫ 1

0

∥∥∇f(x+ t(x′ − x))−∇f(x)
∥∥
∗ ‖x

′ − x‖dt

≤ f(x) +∇f(x) · (x′ − x) + L

∫ 1

0
‖t(x′ − x)‖ ‖x′ − x‖dt

= f(x) +∇f(x) · (x′ − x) +
L

2
‖x′ − x‖2

We want to define a “gradient descent” method in the norms ‖ · ‖, ‖ · ‖∗. We choose x0 ∈ E.
Given xk, k ≥ 0, we define xk+1 = xk − pk and we find the descent direction pk as follows: we
observe that

f(xk+1) ≤ f(xk)−∇f(xk) · pk +
L

2
‖pk‖2.

Then, we choose a pk which minimizes the expression in the right-hand side of this equation.

4. Show that one has to choose pk ∈ ∂F∗( 1
L∇f

∗), and that one obtains, for such a choice:

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∗.

One has to find pk which minimizes

min
pk
−∇f(xk)·pk+L

2
‖pk‖2 = −Lmax

pk

1
L∇f(xk)·pk−F(pk) = −LF∗( 1

L∇f(xk)) = − 1
2L‖∇f(xk)‖2∗.

A minimizer satisfies 1
L∇f(xk) − ∂F(pk) 3 0, that is, 1

L∇f(xk) ∈ ∂F(pk), or equivalently,
pk ∈ ∂F∗( 1

L∇f(xk)).

5. We assume the set X = {f ≤ f(x0)} is bounded, and observe that xk ∈ X for any k ≥ 1.
We also assume that f has a minimizer x∗ (obviously, x∗ ∈ X). As in the Lecture notes, show
that for all k ≥ 0:

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− (f(xk)− f(x∗))2

2L‖xk − x∗‖2
,

and:

f(xk)− f(x∗) ≤ 2LC

k + 1

where C = maxx∈X ‖x− x∗‖2.
See Lemma 2.6, Thm. 2.7 in the Lecture notes.
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4. Optimization: Polyak’s subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent
method, which can be used whenever the optimal value of a problem is known. One consider
a convex function f : Rn → R (dom f = Rn), which has a non empty set of minimizer(s) X∗,
and we assume that the minimal value f∗ is known. For instance:

f(x) = max
1≤i≤p

|ai · x− bi|

where ai ∈ Rn, b ∈ Rp are such that ai · x = bi, i = 1, . . . , p has a solution: in that case f∗ = 0.
Then, one chooses x0 ∈ Rn and computes a subgradient descent method by picking for all

k ≥ 0, pk ∈ ∂f(xk) and

xk+1 = xk − f(xk)− f∗

‖pk‖2
pk.

1. Show that, if x∗ ∈ X∗ is any minimizer,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (f(xk)− f∗)2

‖pk‖2
.

What do we deduce for the sequence (xk)k≥0?
We write:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2
(f(xk)− f∗)pk · (xk − x∗)

‖pk‖2
+

(f(xk)− f∗)2

‖pk‖2

≤ ‖xk − x∗‖2 − (f(xk)− f∗)2

‖pk‖2
.

because simply, pk · (xk − x∗) ≥ f(xk)− f(x∗) since pk ∈ ∂f(xk). In particular, the sequence of
iterates is bounded (and has converging subsequences).

2. Why is it true that C := supk ‖pk‖ < +∞? Deduce that

∞∑
k=0

(f(xk)− f∗)2 < +∞.

The first question shows that xk is a bounded sequence. By assumption, f is convex, defined
on Rn, so we know that it is locally Lipschitz, and its subgradients are locally bounded. This
shows that the supk ‖pk‖ must be finite.

Hence, letting C ≥ supk ‖pk‖, one finds

‖xk+1 − x∗‖2 +
(f(xk)− f∗)2

C2
≤ ‖xk+1 − x∗‖2 +

(f(xk)− f∗)2

‖pk‖2
≤ ‖xk − x∗‖2

and summing from k = 0 to n we get

n∑
k=0

(f(xk)− f∗)2 + C2‖xn+1 − x∗‖2 ≤ C2‖x0 − x∗‖2.

for any n ≥ 0, and in particular one can let n→∞.
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3. We deduce that f(xk)→ f∗. Show that there is one minimizer x∗ ∈ X∗, such that xk → x∗.
We have seen that (xk) is bounded so there exists x∗ such that a subsequence (xkl) converges

to x∗. Then, f(xkl)→ f(x∗) = f∗, so that x∗ is a minimizer. Now, from the first question, we
deduce that ‖xk−x∗‖2 is a non-increasing sequence. (In particular it has a limit.) Since it goes
to zero along the subsequence (kl), then it must go to zero so that xk → x∗.

4. We now assume that the function is “α-sharp”, α ≥ 1, meaning that for some γ > 0,

f(x)− f∗ ≥ γdist (x,X∗)α.

Show that

dist (xk+1, X∗)2 ≤ dist (xk, X∗)2 − γ2dist (xk, X∗)2α

C2
.

In case α = 1 (which is the situation in the example mentioned in the introduction of this
exercise), what do we deduce?

Let x ∈ X∗ be the projection of xk on the solution set X∗ (which is closed, convex) so that
‖xk − x‖ = dist (xk, X∗). Then:

dist (xk+1, X∗)2 ≤ ‖xk+1−x‖2 ≤ ‖xk−x‖2− (f(xk)− f∗)2

C2
≤ dist (xk, X∗)2− γ

2dist (xk, X∗)2α

C2
.

When α = 1 this reduces to dist (xk+1, X∗)2 ≤ dist (xk, X∗)2(1 − γ2

C2 ), one has a geometric
(linear) convergence to the solution set (note that the actual convergence to x∗ could be slower).

5. We consider a sequence ak, k ≥ 0, with for all k ≥ 0, ak ≥ 0 and ak+1 ≤ ak − c−1a1+βk ,
c > 0, β > 0. Show that:

ak ≤
(

c

max{β, 1}(k + 1)

)1/β

.

Hint: introduce bk := aβk , and depending on whether β ≥ 1 or β ≤ 1, try to show that

bk ≤ bk − c′−1b2k for some c′ (depending on c, β). Use then the Lecture notes.

Since ak ≤ ak(1−c−1aβk), we can write that bk+1 ≤ bk(1−c−1bk)β. If β ≤ 1, we use (concavity)
that (1− c−1bk)β ≤ 1− βc−1bk. If β ≥ 1, we use rather than (1− c−1bk)β ≤ 1− c−1bk. In both
cases, we get

bk+1 ≤ bk −
max{β, 1}

c
b2k

and from Lemma 2.6 in the notes, we deduce bk ≤ c/(max{β, 1}(k+1)). The conclusion follows.

6. Deduce the rate of convergence for the distance from xk to the set X∗ in case α > 1.
From the two previous questions, we deduce that

dist (xk, X∗)2 ≤
(

C2

γ2 max{α− 1, 1}
1

k + 1

) 1
α−1

.
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