# Continuous Optimization <br> Introduction à l'optimisation continue <br> Assessment <br> (4th January 2021) 

## 1. Convex analysis: Exercise

1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:
2. $x \mapsto|x|^{3} / 3$;
3. $x \mapsto 3 x$;
4. $x \mapsto\langle A x, x\rangle / 2$ where $x \in \mathbb{R}^{n}$ and $A$ is a symmetric, positive definite operator;
5. $x \mapsto-\sqrt{x}$ if $x \geq 0,+\infty$ if $x<0$.
6. Evaluate $y=\operatorname{prox}_{\tau f}(x)$ for $f(x)=|x|^{3} / 3, \tau>0$.
7. (More difficult) Evaluate the convex conjugate of the "Entropy" function:

$$
S: \mathbb{R}^{n} \rightarrow[0,+\infty] ; \quad x \mapsto \begin{cases}\sum_{i=1}^{n} x_{i} \ln x_{i} & \text { if } x_{i} \geq 0 \forall i, \sum_{i} x_{i}=1, \\ +\infty & \text { else },\end{cases}
$$

where here by convention we let $t \ln t=0$ when $t=0$. (Hint: introduce a Lagrange multiplier for the constraint $\sum_{i} x_{i}=1$.)

## 2. Convex analysis: Moreau-Yosida regularization

Given $\left.\left.f: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$ a convex, lower-semicontinuous function, which is proper (that is, $f>-\infty$ and $\operatorname{dom} f \neq \emptyset$ ), we recall that the Moreau-Yosida regularization of $f$ with parameter $\tau>0$ is given by:

$$
f_{\tau}(x)=\min _{y} f(y)+\frac{1}{2 \tau}\|y-x\|^{2}
$$

We recall that for any $x$, this problem has a unique minimizer $y$ (because the function to minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as $y=\operatorname{prox}_{\tau f}(x)$, the "proximity operator" of $\tau f$ evaluated at $x$. In particular, $f_{\tau}(x) \in \mathbb{R}$ and $\operatorname{dom} f_{\tau}=\mathbb{R}^{n}$. Further properties of the $\operatorname{prox}_{\tau f}$ operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that $f_{\tau}$ is convex, lower-semicontinuous.
2. Let $x \in \mathbb{R}^{n}$ and $p \in \partial f_{\tau}(x)$. Show that for any $h \in \mathbb{R}^{n}$,

$$
p \cdot h \leq\left(\frac{x-\operatorname{prox}_{\tau f}(x)}{\tau}\right) \cdot h
$$

(Hint: bound from below and above $f_{\tau}(x+t h)$, for $t>0$ small, then send $t$ to zero.)
Deduce that $f_{\tau}$ is differentiable at $x$, with $\nabla_{\tau} f(x)=\left(x-\operatorname{prox}_{\tau f}(x)\right) / \tau$.
3. Recall why $\operatorname{prox}_{\tau f}$ is "firmly non-expansive". Deduce that $\nabla f_{\tau}$ is $(1 / \tau)$-Lipschitz.
4. Recall "Moreau's" identity. Deduce that $\nabla f_{\tau}(x)=\operatorname{prox}_{\frac{1}{\tau} f^{*}}(x / \tau)$ where $f^{*}$ is the convex conjugate (Legendre-Fenchel transform) of $f$.

In what follows, ${ }^{* *}$ to simplify ${ }^{* *}$ we let $\tau=1$.
5. Deduce from the previous results that for any $x$,

$$
\nabla f_{1}(x)+\nabla\left(f^{*}\right)_{1}(x)=x
$$

(here $\left(f^{*}\right)_{1}$ is the Moreau-Yosida regularization with parameter $\tau=1$ of the conjugate $f^{*}$ of $f$, and not!! the conjugate of $f_{1}$ ).
6. Therefore by integration one finds: $f_{1}(x)+\left(f^{*}\right)_{1}(x)=\|x\|^{2} / 2+C$ for some constant $C$, with $C=f_{1}(0)+\left(f^{*}\right)_{1}(0)$. Let $y=\operatorname{prox}_{f}(0), z=\operatorname{prox}_{f^{*}}(0)$. Show that $y=-z$. Deduce that $C=0$.

## 3. Optimization: Nonlinear gradient descent

Let $\|\cdot\|$ be a norm on $\mathbb{R}^{n}$, possibly different from the standard Euclidean 2-norm: for instance, $\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|$ (the 1-norm), or $\|x\|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$ (the $\infty$-norm). (A norm is any convex, 1 -homogeneous, even, function with values in $[0,+\infty[$ and which is strictly positive except in 0 .) We define the dual (or polar) norm $\|y\|_{*}$ by the formula:

$$
\|y\|_{*}=\sup _{x:\|x\| \leq 1} y \cdot x
$$

where $y \cdot x$ is the standard dot product $y \cdot x=\sum_{i=1}^{n} y_{i} x_{i}$. In particular, one has $y \cdot x \leq\|y\|_{*}\|x\|$ for all $y, x$. (The "right" point of view should be that $y$ is in the dual $E^{*}$ of $E=\mathbb{R}^{n}$ (which is also $E^{*}=\mathbb{R}^{n}$ ) and that $y \cdot x$ is the evaluation of the linear form $y$ at $x$. Then, $\|\cdot\|$ is the norm on $E$ while $\|\cdot\|_{*}$ is the norm on $E^{*}$.)

1. Show that if $\mathcal{F}(x):=\|x\|^{2} / 2$, then its convex conjugate is $\mathcal{F}^{*}(y)=\|y\|_{*}^{2} / 2$. Deduce that the dual norm of $\|\cdot\|_{*}$ is $\|\cdot\|$, that is, for all $x$,

$$
\|x\|=\sup _{y:\|y\|_{*} \leq 1} y \cdot x
$$

2. Compute $\|\cdot\|_{*}$ in the following cases:
i. 1-norm: $\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|$;
ii. 2-norm: $\|x\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}=\sqrt{x \cdot x}$.

Now, we consider a function $f$ whose differential is $L$-Lipschitz in the normed space $E=$ $\left(\mathbb{R}^{n},\|\cdot\|\right)$, which means precisely that for any $x, x^{\prime} \in \mathbb{R}^{n}$,

$$
\left\|\nabla f(x)-\nabla f\left(x^{\prime}\right)\right\|_{*} \leq L\left\|x-x^{\prime}\right\|
$$

where $\nabla f(x) \in E^{*}$ is the vector of partial derivatives $\left(\partial f / \partial x_{i}\right)_{i=1}^{n}$.
3. Show that, as in the Euclidean case, one has for $x, x^{\prime} \in E$,

$$
f\left(x^{\prime}\right) \leq f(x)+\nabla f(x) \cdot\left(x^{\prime}-x\right)+\frac{L}{2}\left\|x-x^{\prime}\right\|^{2} .
$$

We want to define a "gradient descent" method in the norms $\|\cdot\|,\|\cdot\|_{*}$. We choose $x^{0} \in E$. Given $x^{k}, k \geq 0$, we define $x^{k+1}=x^{k}-p^{k}$ and we find the descent direction $p^{k}$ as follows: we observe that

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\nabla f\left(x^{k}\right) \cdot p^{k}+\frac{L}{2}\left\|p^{k}\right\|^{2} .
$$

Then, we choose a $p^{k}$ which minimizes the expression in the right-hand side of this equation.
4. Show that one has to choose $p^{k} \in \partial \mathcal{F}^{*}\left(\frac{1}{L} \nabla f^{*}\right)$, and that one obtains, for such a choice:

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x^{k}\right)\right\|_{*}^{2} .
$$

5. We assume the set $X=\left\{f \leq f\left(x^{0}\right)\right\}$ is bounded, and observe that $x^{k} \in X$ for any $k \geq 1$. We also assume that $f$ has a minimizer $x^{*}$ (obviously, $x^{*} \in X$ ). As in the Lecture notes, show that for all $k \geq 0$ :

$$
f\left(x^{k+1}\right)-f\left(x^{*}\right) \leq f\left(x^{k}\right)-f\left(x^{*}\right)-\frac{\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)^{2}}{2 L\left\|x^{k}-x^{*}\right\|^{2}}
$$

and:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{2 L C}{k+1}
$$

where $C=\max _{x \in X}\left\|x-x^{*}\right\|^{2}$.

## 4. Optimization: Polyak's subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent method, which can be used whenever the optimal value of a problem is known. One consider a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}\left(\operatorname{dom} f=\mathbb{R}^{n}\right)$, which has a non empty set of minimizer(s) $X^{*}$, and we assume that the minimal value $f^{*}$ is known. For instance:

$$
f(x)=\max _{1 \leq i \leq p}\left|a^{i} \cdot x-b_{i}\right|
$$

where $a^{i} \in \mathbb{R}^{n}, b \in \mathbb{R}^{p}$ are such that $a^{i} \cdot x=b_{i}, i=1, \ldots, p$ has a solution: in that case $f^{*}=0$.
Then, one chooses $x^{0} \in \mathbb{R}^{n}$ and computes a subgradient descent method by picking for all $k \geq 0, p^{k} \in \partial f\left(x^{k}\right)$ and

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)-f^{*}}{\left\|p^{k}\right\|^{2}} p^{k} .
$$

1. Show that, if $x^{*} \in X^{*}$ is any minimizer,

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f\left(x^{k}\right)-f^{*}\right)^{2}}{\left\|p^{k}\right\|^{2}}
$$

What do we deduce for the sequence $\left(x^{k}\right)_{k \geq 0}$ ?
2. Why is it true that $C:=\sup _{k}\left\|p^{k}\right\|<+\infty$ ? Deduce that $\sum_{k=0}^{\infty}\left(f\left(x^{k}\right)-f^{*}\right)^{2}<+\infty$.
3. We deduce that $f\left(x^{k}\right) \rightarrow f^{*}$. Show that there is one minimizer $x^{*} \in X^{*}$, such that $x^{k} \rightarrow x^{*}$.
4. We now assume that the function is " $\alpha$-sharp", $\alpha \geq 1$, meaning that for some $\gamma>0$,

$$
f(x)-f^{*} \geq \gamma \operatorname{dist}\left(x, X^{*}\right)^{\alpha}
$$

Show that

$$
\operatorname{dist}\left(x^{k+1}, X^{*}\right)^{2} \leq \operatorname{dist}\left(x^{k}, X^{*}\right)^{2}-\frac{\gamma^{2} \operatorname{dist}\left(x^{k}, X^{*}\right)^{2 \alpha}}{C^{2}}
$$

In case $\alpha=1$ (which is the situation in the example mentioned in the introduction of this exercise), what do we deduce?
5. We consider a sequence $a_{k}, k \geq 0$, with for all $k \geq 0, a_{k} \geq 0$ and $a_{k+1} \leq a_{k}-c^{-1} a_{k}^{1+\beta}$, $c>0, \beta>0$. Show that:

$$
a_{k} \leq\left(\frac{c}{\max \{\beta, 1\}(k+1)}\right)^{1 / \beta}
$$

Hint: introduce $b_{k}:=a_{k}^{\beta}$, and depending on whether $\beta \geq 1$ or $\beta \leq 1$, try to show that $b_{k} \leq b_{k}-c^{\prime-1} b_{k}^{2}$ for some $c^{\prime}$ (depending on $c, \beta$ ). Use then the Lecture notes.
6. Deduce the rate of convergence for the distance from $x^{k}$ to the set $X^{*}$ in case $\alpha>1$.

