Continuous Optimization Introduction à l'optimisation continue Assessment (4th January 2021)

1. Convex analysis: Exercise

- 1. Evaluate the convex conjugate (Legendre-Fenchel conjugate) of the functions:
 - 1. $x \mapsto |x|^3/3;$
 - 2. $x \mapsto 3x;$
 - 3. $x \mapsto \langle Ax, x \rangle / 2$ where $x \in \mathbb{R}^n$ and A is a symmetric, positive definite operator;
 - 4. $x \mapsto -\sqrt{x}$ if $x \ge 0, +\infty$ if x < 0.
- **2.** Evaluate $y = \text{prox}_{\tau f}(x)$ for $f(x) = |x|^3/3, \tau > 0$.
- 3. (More difficult) Evaluate the convex conjugate of the "Entropy" function:

$$S : \mathbb{R}^n \to [0, +\infty]; \qquad x \mapsto \begin{cases} \sum_{i=1}^n x_i \ln x_i & \text{if } x_i \ge 0 \ \forall i, \sum_i x_i = 1, \\ +\infty & \text{else,} \end{cases}$$

where here by convention we let $t \ln t = 0$ when t = 0. (Hint: introduce a Lagrange multiplier for the constraint $\sum_{i} x_i = 1$.)

2. Convex analysis: Moreau-Yosida regularization

Given $f : \mathbb{R}^n \to] - \infty, +\infty]$ a convex, lower-semicontinuous function, which is proper (that is, $f > -\infty$ and dom $f \neq \emptyset$), we recall that the Moreau-Yosida regularization of f with parameter $\tau > 0$ is given by:

$$f_{\tau}(x) = \min_{y} f(y) + \frac{1}{2\tau} \|y - x\|^2$$

We recall that for any x, this problem has a unique minimizer y (because the function to minimize is strongly convex, lower-semicontinuous) and that the minimizer is also known as $y = \operatorname{prox}_{\tau f}(x)$, the "proximity operator" of τf evaluated at x. In particular, $f_{\tau}(x) \in \mathbb{R}$ and dom $f_{\tau} = \mathbb{R}^n$. Further properties of the $\operatorname{prox}_{\tau f}$ operator are described in the lecture notes.

1. Show (by giving a proof or invoking the appropriate result in the lecture notes) that f_{τ} is convex, lower-semicontinuous.

2. Let $x \in \mathbb{R}^n$ and $p \in \partial f_\tau(x)$. Show that for any $h \in \mathbb{R}^n$,

$$p \cdot h \le \left(\frac{x - \operatorname{prox}_{\tau f}(x)}{\tau}\right) \cdot h.$$

(Hint: bound from below and above $f_{\tau}(x+th)$, for t > 0 small, then send t to zero.) Deduce that f_{τ} is differentiable at x, with $\nabla_{\tau} f(x) = (x - \operatorname{prox}_{\tau f}(x))/\tau$.

3. Recall why $\operatorname{prox}_{\tau f}$ is "firmly non-expansive". Deduce that ∇f_{τ} is $(1/\tau)$ -Lipschitz.

4. Recall "Moreau's" identity. Deduce that $\nabla f_{\tau}(x) = \operatorname{prox}_{\frac{1}{\tau}f^*}(x/\tau)$ where f^* is the convex conjugate (Legendre-Fenchel transform) of f.

In what follows, ****to simplify**** we let $\tau = 1$.

5. Deduce from the previous results that for any x,

$$\nabla f_1(x) + \nabla (f^*)_1(x) = x$$

(here $(f^*)_1$ is the Moreau-Yosida regularization with parameter $\tau = 1$ of the conjugate f^* of f, and *not!!* the conjugate of f_1).

6. Therefore by integration one finds: $f_1(x) + (f^*)_1(x) = ||x||^2/2 + C$ for some constant C, with $C = f_1(0) + (f^*)_1(0)$. Let $y = \text{prox}_f(0)$, $z = \text{prox}_{f^*}(0)$. Show that y = -z. Deduce that C = 0.

3. Optimization: Nonlinear gradient descent

Let $\|\cdot\|$ be a norm on \mathbb{R}^n , possibly different from the standard Euclidean 2-norm: for instance, $\|x\| = \sum_{i=1}^n |x_i|$ (the 1-norm), or $\|x\| = \max\{|x_1|, \ldots, |x_n|\}$ (the ∞ -norm). (A norm is any convex, 1-homogeneous, even, function with values in $[0, +\infty[$ and which is strictly positive except in 0.) We define the dual (or polar) norm $\|y\|_*$ by the formula:

$$\|y\|_* = \sup_{x:\|x\| \le 1} y \cdot x$$

where $y \cdot x$ is the standard dot product $y \cdot x = \sum_{i=1}^{n} y_i x_i$. In particular, one has $y \cdot x \leq ||y||_* ||x||$ for all y, x. (The "right" point of view should be that y is in the dual E^* of $E = \mathbb{R}^n$ (which is also $E^* = \mathbb{R}^n$) and that $y \cdot x$ is the evaluation of the linear form y at x. Then, $|| \cdot ||$ is the norm on E while $|| \cdot ||_*$ is the norm on E^* .)

1. Show that if $\mathcal{F}(x) := ||x||^2/2$, then its convex conjugate is $\mathcal{F}^*(y) = ||y||_*^2/2$. Deduce that the dual norm of $||\cdot||_*$ is $||\cdot||$, that is, for all x,

$$||x|| = \sup_{y:||y||_* \le 1} y \cdot x.$$

- **2.** Compute $\|\cdot\|_*$ in the following cases:
 - i. 1-norm: $||x|| = \sum_{i=1}^{n} |x_i|$; ii. 2-norm: $||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} = \sqrt{x \cdot x}$.

Now, we consider a function f whose differential is L-Lipschitz in the normed space $E = (\mathbb{R}^n, \|\cdot\|)$, which means precisely that for any $x, x' \in \mathbb{R}^n$,

$$\|\nabla f(x) - \nabla f(x')\|_* \le L \|x - x'\|$$

where $\nabla f(x) \in E^*$ is the vector of partial derivatives $(\partial f/\partial x_i)_{i=1}^n$.

3. Show that, as in the Euclidean case, one has for $x, x' \in E$,

$$f(x') \le f(x) + \nabla f(x) \cdot (x' - x) + \frac{L}{2} ||x - x'||^2.$$

We want to define a "gradient descent" method in the norms $\|\cdot\|, \|\cdot\|_*$. We choose $x^0 \in E$. Given $x^k, k \ge 0$, we define $x^{k+1} = x^k - p^k$ and we find the descent direction p^k as follows: we observe that

$$f(x^{k+1}) \le f(x^k) - \nabla f(x^k) \cdot p^k + \frac{L}{2} ||p^k||^2.$$

Then, we choose a p^k which minimizes the expression in the right-hand side of this equation.

4. Show that one has to choose $p^k \in \partial \mathcal{F}^*(\frac{1}{L}\nabla f^*)$, and that one obtains, for such a choice:

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_*^2.$$

5. We assume the set $X = \{f \leq f(x^0)\}$ is bounded, and observe that $x^k \in X$ for any $k \geq 1$. We also assume that f has a minimizer x^* (obviously, $x^* \in X$). As in the Lecture notes, show that for all $k \geq 0$:

$$f(x^{k+1}) - f(x^*) \le f(x^k) - f(x^*) - \frac{(f(x^k) - f(x^*))^2}{2L \|x^k - x^*\|^2},$$

and:

$$f(x^k) - f(x^*) \le \frac{2LC}{k+1}$$

where $C = \max_{x \in X} ||x - x^*||^2$.

4. Optimization: Polyak's subgradient descent method

In his book from 1987, Boris T. Polyak suggests the following variant of the subgradient descent method, which can be used whenever the optimal value of a problem is known. One consider a convex function $f : \mathbb{R}^n \to \mathbb{R}$ (dom $f = \mathbb{R}^n$), which has a non empty set of minimizer(s) X^* , and we assume that the minimal value f^* is known. For instance:

$$f(x) = \max_{1 \le i \le p} |a^i \cdot x - b_i|$$

where $a^i \in \mathbb{R}^n, b \in \mathbb{R}^p$ are such that $a^i \cdot x = b_i, i = 1, \dots, p$ has a solution: in that case $f^* = 0$.

Then, one chooses $x^0 \in \mathbb{R}^n$ and computes a subgradient descent method by picking for all $k \ge 0, \, p^k \in \partial f(x^k)$ and

$$x^{k+1} = x^k - \frac{f(x^k) - f^*}{\|p^k\|^2} p^k.$$

1. Show that, if $x^* \in X^*$ is any minimizer,

$$||x^{k+1} - x^*||^2 \le ||x^k - x^*||^2 - \frac{(f(x^k) - f^*)^2}{||p^k||^2}.$$

What do we deduce for the sequence $(x^k)_{k>0}$?

2. Why is it true that
$$C := \sup_k \|p^k\| < +\infty$$
? Deduce that $\sum_{k=0}^{\infty} (f(x^k) - f^*)^2 < +\infty$.

3. We deduce that $f(x^k) \to f^*$. Show that there is one minimizer $x^* \in X^*$, such that $x^k \to x^*$.

4. We now assume that the function is " α -sharp", $\alpha \ge 1$, meaning that for some $\gamma > 0$,

$$f(x) - f^* \ge \gamma \operatorname{dist}(x, X^*)^{\alpha}.$$

Show that

dist
$$(x^{k+1}, X^*)^2 \le \text{dist} (x^k, X^*)^2 - \frac{\gamma^2 \text{dist} (x^k, X^*)^{2\alpha}}{C^2}$$
.

In case $\alpha = 1$ (which is the situation in the example mentioned in the introduction of this exercise), what do we deduce?

5. We consider a sequence a_k , $k \ge 0$, with for all $k \ge 0$, $a_k \ge 0$ and $a_{k+1} \le a_k - c^{-1}a_k^{1+\beta}$, $c > 0, \beta > 0$. Show that:

$$a_k \le \left(\frac{c}{\max\{\beta,1\}(k+1)}\right)^{1/\beta}.$$

Hint: introduce $b_k := a_k^{\beta}$, and depending on whether $\beta \ge 1$ or $\beta \le 1$, try to show that $b_k \le b_k - c'^{-1}b_k^2$ for some c' (depending on c, β). Use then the Lecture notes.

6. Deduce the rate of convergence for the distance from x^k to the set X^* in case $\alpha > 1$.