Introduction to Continuous optimization

Assessment

(6th January 2021)

Exercise I

We denote $\mathbb{R}_{\text {sym }}^{n \times n}$ the space of dimension $n(n+1) / 2$ of symmetric $n \times n$ matrices. We consider the scalar product $X: Y=\sum_{i, j} X_{i, j} Y_{i, j}=\operatorname{Tr}(X Y)$ (or $\operatorname{Tr}\left(X^{T} Y\right)$ but it is the same here since X, Y are symmetric).

Let $\mathcal{S}_{+} \subset \mathbb{R}_{\text {sym }}^{n \times n}$ be the set of $n \times n$ symmetric, positive semidefinite matrices: $X=X^{T},(X \xi) \cdot \xi \geq 0$ for any $\xi \in \mathbb{R}^{n}$. Let \mathcal{S}_{++}be the interior of \mathcal{S}_{+}, that is, the set of positive definite matrices: $(X \xi) \cdot \xi>0$ for all $\xi \neq 0$.

We let, for $X \in \mathbb{R}_{\text {sym }}^{n \times n}$:

$$
h(X):= \begin{cases}-\ln \operatorname{det} X & \text { if } X \in \mathcal{S}_{++}, \\ +\infty & \text { else }\end{cases}
$$

1. Let $X \in \mathcal{S}_{++}, H$ a symmetric matrix. Show that for $t \in \mathbb{R}$ with $|t|$ small enough, $X+t H \in \mathcal{S}_{++}$.
For ξ a vector, one has $((X+t H) \xi) \cdot \xi=(X \xi) \cdot \xi+t(H \xi) \cdot \xi \geq\left(\lambda_{1}(X)-t\|H\|\right)|\xi|^{2}>$ 0 if $t<\lambda_{1}(X) /\|H\|$, where $\lambda_{1}(X)>0$ is the smallest eigenvalue of X.
2. Using $X+t H=X\left(I+t X^{-1} H\right)$, show that

$$
\nabla h(X)=-X^{-1}
$$

We recall that $\operatorname{det}(I+A)=1+\operatorname{Tr} A+o(\|A\|)$.
We have:

$$
\begin{aligned}
& \quad h(X+t H)=-\ln \operatorname{det}\left(X\left(I+t X^{-1} H\right)\right) \\
& =-\ln \left(\operatorname{det}(X) \operatorname{det}\left(I+t X^{-1} H\right)\right)=h(X)-\ln \operatorname{det}\left(I+t X^{-1} H\right) \\
& =h(X)-\ln \left(1+t \operatorname{Tr}\left(X^{-1} H\right)+o(t)\right)=h(X)-t \operatorname{Tr}\left(X^{-1} H\right)+o(t)=h(X)-t X^{-1}: H+o(t)
\end{aligned}
$$

which shows the claim.
3. One now wants to compute the conjugate $h^{*}(Y)=\sup _{X} X: Y-h(X)$.

Let $Y \in \mathbb{R}_{\text {sym }}^{n \times n}$ and assume e is an eigenvector of Y with eigenvalue $\lambda \in \mathbb{R}$ (and $|e|=1$).

Considering first X of the form $t e \otimes e+\varepsilon I$ (where for $e \in \mathbb{R}^{n} \backslash\{0\}$ with $|e|=1, e \otimes e$ is the matrix $e_{i} e_{j}$ which has eigenvector e with eigenvalue 1), $\varepsilon>0, t \rightarrow+\infty$, show that $h^{*}(Y)=+\infty$ if $\lambda \geq 0$.

Deduce that dom $h^{*} \subset\left\{Y:-Y \in \mathcal{S}_{++}\right\}$.
One has, for $X=t e \otimes e+\varepsilon I$, $\operatorname{det} X=\varepsilon^{n-1}(t+\varepsilon)$ and $X: Y-h(X)=$ $\varepsilon \operatorname{Tr} X+t \lambda+(n-1) \ln \varepsilon+\ln (\varepsilon+t)$ which goes to $+\infty$ as $t \rightarrow \infty$ if $\lambda \geq 0$. Hence, $h^{*}(Y)<+\infty$ only if all eigenvalues of Y are strictly negative, that is $-Y \in \mathcal{S}_{++}$.
4. Now, assuming $-Y>0$ we admit (even if it is quite easy to show) that $\sup _{X} X: Y-h(X)$ is reached at some positive matrix X.

Show that $X=-Y^{-1}$. Deduce the expression of h^{*}. Deduce also that h is convex.
At the maximum X one has $\nabla_{X}(X: Y-h(X))=Y-\left(-X^{-1}\right)=0$ so that $Y=\left(-X^{-1}\right) \Leftrightarrow X=-Y^{-1}$. Then,

$$
X: Y-h(X)=\operatorname{Tr}\left(-Y^{-1} Y\right)+\ln \operatorname{det}\left(-Y^{-1}\right)=-n-\ln \operatorname{det}(-Y)
$$

In particular, the function

$$
Y \mapsto \begin{cases}-n-\ln \operatorname{det}(-Y) & \text { if }-Y \in \mathcal{S}_{++} \\ +\infty & \text { else. }\end{cases}
$$

is convex, and so is $h(X)=n+h^{*}(-X)$.
5. We consider the problem $\min _{X \in \mathcal{S}_{+}} C: X$ and the Bregman distance

$$
D_{h}(X, Y)=h(X)-h(Y)-\nabla h(Y):(X-Y)
$$

induced by h, defined for $X, Y \in \mathcal{S}_{++}$. Write the expression of an iteration of non-linear gradient descent for the problem, with step $\tau>0$, relative to the Bregman distance D_{h}. Why can we always assume that C is symmetric? What assumption is needed on C in order for the problem to have a solution (and the algorithm to be well defined for all k)?
X^{k+1} is obtained as (if it exists)

$$
X^{k+1}=\arg \min _{X} \frac{1}{\tau} D_{h}\left(X, X^{k}\right)+C: X
$$

and satisfies: $-\left(X^{k+1}\right)^{-1}=-\left(X^{k}\right)^{-1}-\tau C$, that is

$$
X^{k+1}=\left(\left(X^{k}\right)^{-1}+\tau C\right)^{-1}
$$

If C is not symmetric then $C: X=C^{T}: X^{T}=C^{T}: X=\left(C+C^{T}\right): X / 2$ so one can replace C with its symmetric part. If C has a negative eigenvalue, as in the analysis of the previous question, the minimum problem has no solution (the value is $-\infty$) as soon as $\left(X^{0}\right)^{-1}+\tau k C$ has a negative eigenvalue. If $C \geq 0$, the iterates are $X^{k}=\left(\left(X^{0}\right)^{-1}+\tau k C\right)^{-1}$

Exercice II - prox

Compute the proximity operator (for some parameter $\tau>0$):

$$
\operatorname{prox}_{\tau g}(x)=\arg \min _{z} g(z)+\frac{1}{2 \tau}|z-x|^{2}
$$

for the convex functions:

1. $g_{1}(x)=-\ln x$ for $x>0,+\infty$ else;

The equation is $z-x-\tau / z=0$, that is $z^{2}-z x-\tau=0$, that is $z=(x+$ $\left.\sqrt{x^{2}+4 \tau}\right) / 2$.
2. $g_{2}(x)=\sum_{i=1}^{n} \frac{1}{3}\left|x_{i}\right|^{3},\left(x \in \mathbb{R}^{n}\right)$;

The problem is:

$$
\min _{z} \sum_{i=1}^{n} \frac{1}{3}\left|z_{i}\right|^{3}+\frac{1}{2 \tau}\left|z_{i}-x_{i}\right|^{2}
$$

and can be minimized independently for each i : the minimizer satisfies

$$
\tau \operatorname{sign}\left(z_{i}\right) z_{i}^{2}+z_{i}-x_{i}=0, \quad i=1, \ldots, n
$$

Clearly the sign of z_{i} is the same as the sign of $x_{i}\left(\right.$ as $\tau \operatorname{sign}\left(z_{i}\right) z_{i}^{2}+z_{i}=$ $z_{i}\left(\tau\left|z_{i}\right|+1\right)$ has the same sign as $\left.z_{i}\right)$. Solving the equation one obtains:

$$
z_{i}=\operatorname{sign}\left(x_{i}\right) \frac{\sqrt{1+4 \tau\left|x_{i}\right|}-1}{2 \tau}
$$

3. $g_{3}(x)=\sum_{i=1}^{n} \frac{2}{3}\left|x_{i}\right|^{3 / 2},\left(x \in \mathbb{R}^{n}\right)$;
$g_{3}=g_{2}^{*}$ and one has the Moreau identity:

$$
\operatorname{prox}_{\tau g_{3}}(x)=x-\tau \operatorname{prox}_{\frac{1}{\tau} g_{3}^{*}}\left(\frac{x}{\tau}\right)
$$

Hence,

$$
\begin{aligned}
& z_{i}=x_{i}-\tau \operatorname{sign}\left(x_{i}\right) \frac{\sqrt{1+(4 / \tau)\left|x_{i} / \tau\right|}-1}{2 / \tau}=\operatorname{sign}\left(x_{i}\right)\left(\left|x_{i}\right|+\frac{\tau}{2}^{2}-\tau \frac{\sqrt{\tau^{2}+4\left|x_{i}\right|}}{2}\right) \\
= & \operatorname{sign}\left(x_{i}\right) \frac{4\left|x_{i}\right|+\tau^{2}+\tau^{2}-2 \tau \sqrt{\tau^{2}+4\left|x_{i}\right|}}{4}=\operatorname{sign}\left(x_{i}\right)\left(\frac{\sqrt{\tau^{2}+4\left|x_{i}\right|}-\tau}{2}\right)^{2}
\end{aligned}
$$

The last expression is the one which is obtained directly if one solves the minimization problem (without using Moreau's identity).
4. $g_{4}(x)=\frac{1}{2} \sum_{i} x_{i}^{2}$ if $x_{i} \geq 0, i=1, \ldots, n$, and $+\infty$ else, defined for $x \in \mathbb{R}^{n}$ (and with domain dom $g_{4}=[0,+\infty)^{n}$).
One solves:

$$
\min _{z_{i} \geq 0} \sum_{i} \frac{1}{2} z_{i}^{2}+\frac{1}{2 \tau}\left|z_{i}-x_{i}\right|^{2}
$$

which is solved independently for each i. The solution is $z_{i}=0$ if $x_{i}<0$, otherwise, $(1+\tau) z_{i}-x_{i}=0$, that is, $z_{i}=x_{i} /(1+\tau)$. Hence, $z_{i}=x_{i}^{+} /(1+\tau)$.

Exercise III - rate for the proximal point algorithm

We consider M a maximal-monotone operator, defined in a Hilbert space \mathcal{X}. Given $x^{0} \in \mathcal{X}$, we let for $k \geq 0$:

$$
x^{k+1}=(I+M)^{-1} x^{k}
$$

that is, the iterations of the proximal-point algorithm.

1. Let x^{*} be a zero, that is, a point such that $M x^{*} \ni 0$ (we assume the set $M^{-1}(0)$ is not empty). Show that $x^{*}=(I+M)^{-1}\left(x^{*}\right)$ and that

$$
\left|x^{k+1}-x^{*}\right|^{2}+\left|x^{k}-x^{k+1}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}
$$

One has $x^{*}+0=x^{*}$, hence $x^{*}+M x^{*} \ni x^{*}$, that is $x^{*}=(I+M)^{-1}\left(x^{*}\right)$. Denoting $J_{M}=(I+M)^{-1}$ we know that J_{M} is "firmly non expansive":

$$
\left|J_{M} x-J_{M} x^{\prime}\right|^{2}+\left|\left(I-J_{M}\right) x-\left(I-J_{M}\right) x^{\prime}\right|^{2} \leq\left|x-x^{\prime}\right|^{2} .
$$

With $x=x^{k}$ and $x^{\prime}=x^{*}$ this gives the desired inequality.
2. Show that $\left|x^{k+1}-x^{k}\right|$ is a decreasing function of $k \geq 0$.

This is even easier: if $k \geq 1,\left|x^{k+1}-x^{k}\right|=\left|J_{M} x^{k}-J_{M} x^{k-1}\right| \leq\left|x^{k}-x^{k-1}\right|$ since J_{M} is one-Lipschitz.
3. Deduce that

$$
\left|x^{k+1}-x^{k}\right| \leq \frac{\left|x^{0}-x^{*}\right|}{\sqrt{k+1}}
$$

We sum the inequality of the first question:

$$
\left|x^{k+1}-x^{*}\right|^{2}+\sum_{l=0}^{k}\left|x^{l}-x^{l+1}\right|^{2} \leq\left|x^{0}-x^{*}\right|^{2}
$$

then we use the second question to observe that $\sum_{l=0}^{k}\left|x^{l}-x^{l+1}\right|^{2} \geq(k+1) \mid x^{k}-$ $\left.x^{k+1}\right|^{2}$.
4. Let $x^{k_{l}}$ be a (weakly) converging subsequence, to some point \bar{x}. Show that for any $x^{\prime} \in \mathcal{X}$ and $y^{\prime} \in M x^{\prime}$,

$$
\left\langle x^{\prime}-\bar{x}, y^{\prime}\right\rangle \geq 0
$$

Deduce that $0 \in M \bar{x}$.
Since M is monotone and $x^{k}-x^{k+1} \in M x^{k+1},\left\langle x^{\prime}-x^{k_{l}}, y^{\prime}-\left(x^{k_{l}}-x^{k_{l}+1}\right)\right\rangle \geq 0$ and in the limit, thanks to the previous estimate, we obtain the inequality (we have a product (weak convergence) $\times($ strong convergence $)$).

Since M is maximal-monotone, it means that $0 \in M \bar{x}$ (otherwise one could extend the graph). (Of course, using Opial's lemma, one can then show that $x^{k} \rightarrow \bar{x}$, weakly.)
5. Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a 1-Lipschitz operator and, for $\theta \in(0,1)$, let $T_{\theta}=$ $(1-\theta) I+\theta T$. Let x^{*} be a fixed point of T (and therefore also of T_{θ} for any θ). We now consider the algorithm given by

$$
x^{k+1}=T_{\theta} x^{k}
$$

Use the parallelogram identity to show that:

$$
\left|x^{k+1}-x^{*}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}-\theta(1-\theta)\left|T x^{k}-x^{k}\right|^{2}
$$

One has

$$
\begin{aligned}
\left|x^{k+1}-x^{*}\right|^{2}=\mid & (1-\theta)\left(x^{k}-x^{*}\right)+\left.\theta\left(T x^{k}-x^{*}\right)\right|^{2} \\
& =(1-\theta)\left|x^{k}-x^{*}\right|^{2}+\theta\left|T x^{k}-x^{*}\right|^{2}-\theta(1-\theta)\left|T x^{k}-x^{k}\right|^{2}
\end{aligned}
$$

and one uses $\left|T x^{k}-x^{*}\right|=\left|T x^{k}-T^{*}\right| \leq\left|x^{k}-x^{*}\right|$ to conclude.
6. As before, deduce that:

$$
\left|T x^{k}-x^{k}\right| \leq \frac{\left|x^{0}-x^{*}\right|}{\sqrt{\theta(1-\theta)} \sqrt{k+1}}
$$

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar estimate holds in any metric space, but it is much harder).

As in question 2., one has $\left|x^{k+1}-x^{k}\right| \leq\left|x^{k}-x^{k-1}\right|$ for $k \geq 1$, using that T_{θ} is 1 -Lipschitz. We deduce $\left|T x^{k}-x^{k}\right| \leq\left|T x^{k-1}-x^{k-1}\right|$. Thus,

$$
\theta(1-\theta)(k+1)\left|T x^{k}-x^{k}\right| \theta(1-\theta) \sum_{l=0}^{k}\left|T x^{l}-x^{l}\right|+\left|x^{k+1}-x^{*}\right|^{2} \leq\left|x^{0}-x^{*}\right|^{2}
$$

7. Application: show that the over-relaxed proximal point algorithm:

$$
\begin{aligned}
& x^{k+\frac{1}{2}}=(I+M)^{-1} x^{k} \\
& x^{k+1}=x^{k}+\lambda\left(x^{k+\frac{1}{2}}-x^{k}\right)
\end{aligned}
$$

for $1<\lambda<2$ is a converging method.
We know that $(I+M)^{-1}=I / 2+R / 2$ for a 1-Lipschitz map R. Then,

$$
x^{k+1}=x^{k}+\frac{\lambda}{2}\left(R x^{k}-x^{k}\right)=\left(1-\frac{\lambda}{2}\right) x^{k}+\frac{\lambda}{2} R x^{k}=R_{\frac{\lambda}{2}} x^{k}
$$

is the iteration of an averaged operator, and we can use the previous results to show that $x^{k+1}-x^{k} \rightarrow 0$. Then, we can conclude as in question 4 .

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the Yosida approximation, for $\lambda>0$, as

$$
A_{\lambda} x=\frac{x-J_{\lambda A} x}{\lambda}
$$

where $J_{\lambda A}=(I+\lambda A)^{-1}$ is the resolvent.

1. Show that A_{λ} is a monotone operator.

This is because $J_{\lambda A}$ is 1-Lipschitz. Then, for any x, y,

$$
\left\langle A_{\lambda} x-A_{\lambda} y, x-y\right\rangle=\frac{1}{\lambda}\left(|x-y|^{2}-\left\langle J_{\lambda A} x-J_{\lambda A} y, x-y\right\rangle\right) \geq 0
$$

using that $\left\langle J_{\lambda A} x-J_{\lambda A} y, x-y\right\rangle \leq\left|J_{\lambda A} x-J_{\lambda A} y\right||x-y| \leq|x-y|^{2}$.
2. Show that $A_{\lambda} x=J_{A^{-1} / \lambda}(x / \lambda)$. Deduce that it is $(1 / \lambda)$-Lipschitz. Bonus: show that it is λ-co-coercive.

We use Moreau's identity:

$$
x=(I+\lambda A)^{-1} x+\lambda\left(I+\frac{1}{\lambda} A^{-1}\right)^{-1}\left(\frac{x}{\lambda}\right)=J_{\lambda A} x+\lambda J_{A^{-1} / \lambda}\left(\frac{x}{\lambda}\right) .
$$

We conclude using that J_{\bullet} is 1 -Lipschitz.
3. Let $x \in \operatorname{dom} A$ (that is, $A x \neq \emptyset$). Show that

$$
\lim _{\lambda \rightarrow 0} A_{\lambda} x=A_{0} x:=\arg \min _{p \in A x}|p| .
$$

Hint: first, show that if $p_{\lambda}=A_{\lambda} x$ then $p_{\lambda} \in A\left(x-\lambda p_{\lambda}\right)$. Using the monotonicity of A, deduce that for any $p \in A x,\left|p_{\lambda}\right|^{2} \leq\left\langle p_{\lambda}, p\right\rangle$, hence that $\left|p_{\lambda}\right| \leq|p|$. Conclude by using that A is maximal.
One has $p_{\lambda}=\left(x-J_{\lambda A} x\right) / \lambda$, hence $(I+\lambda A)\left(x-\lambda p_{\lambda}\right) \ni x$, that is, $p_{\lambda} \in A\left(x-\lambda p_{\lambda}\right)$. Since A is monotone, for any y and $q \in A y$,

$$
\begin{equation*}
\left\langle q-p_{\lambda}, y-x+\lambda p_{\lambda}\right\rangle \geq 0 \tag{*}
\end{equation*}
$$

In particular for $y=x, q=p \in A x$,

$$
\left\langle p, p_{\lambda}\right\rangle \geq\left|p_{\lambda}\right|^{2} \Rightarrow\left|p_{\lambda}\right| \leq|p| .
$$

Hence in the limit, if $p_{\lambda_{k}} \rightarrow \bar{p}$, we find from $(*)$ that

$$
\langle q-\bar{p}, y-x\rangle \geq 0
$$

and $|\bar{p}| \leq|p|$ for any $p \in A x$. Since A is maximal, we deduce that $\bar{p} \in A x$, so that it is the (unique) element of minimal norm, and the whole sequence p_{λ} converges to \bar{p}.
4. Contraction semigroup: since A_{λ} is Lipschitz, by the Cauchy-Lipschitz theorem, one can solve for all $x \in \mathcal{X}$:

$$
\left\{\begin{array}{l}
\dot{X}^{\lambda}(t, x)=-A_{\lambda} X^{\lambda}(t, x) \quad t>0, \\
X^{\lambda}(0, x)=x
\end{array}\right.
$$

and the solution, which is at least C^{1} in time, satisfies:

$$
X^{\lambda}(t, x)=x-\int_{0}^{t} A_{\lambda} X^{\lambda}(s, x) d s=X^{\lambda}\left(t^{\prime}, x\right)-\int_{0}^{t-t^{\prime}} A_{\lambda} X^{\lambda}\left(s, X^{\lambda}\left(t^{\prime}, x\right)\right) d s
$$

for any $t^{\prime}<t$. In particular, $X^{\lambda}(t, x)=X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}, x\right)\right)$.
Show that for any $x, y \in \mathcal{X}, t \mapsto\left|X^{\lambda}(t, x)-X^{\lambda}(t, y)\right|^{2}$ is non-increasing. Deduce that $\left|X^{\lambda}(t, x)-X^{\lambda}(t, y)\right| \leq|x-y|$ for all $t \geq 0$.
One simply observes that because A_{λ} is monotone:
$\frac{1}{2} \frac{\partial}{\partial t}\left|X^{\lambda}(t, x)-X^{\lambda}(t, y)\right|^{2}=-\left\langle X^{\lambda}(t, x)-X^{\lambda}(t, y), A_{\lambda} X^{\lambda}(t, x)-A_{\lambda} X^{\lambda}(t, y)\right\rangle \leq 0$.
Then, we deduce

$$
\left|X^{\lambda}(t, x)-X^{\lambda}(t, y)\right| \leq\left|X^{\lambda}(0, x)-X^{\lambda}(0, y)\right|=|x-y| \text {. }
$$

5. Show that $t \mapsto\left|A_{\lambda} X^{\lambda}(t, x)\right|$ is nonincreasing. If $x \in \operatorname{dom} A$, show that $\left|A_{\lambda} X(t, x)\right| \leq\left|A_{0} x\right|$ for all $\lambda>0$ and $t \geq 0$.
Hint: use that

$$
X^{\lambda}(t+h, x)-X^{\lambda}(t, x)=X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}+h, x\right)\right)-X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}, x\right)\right)
$$

for any $h>0, t, t^{\prime}<t$, and the previous question.
The contraction semi-group property shows that

$$
\begin{aligned}
\left|X^{\lambda}(t+h, x)-X^{\lambda}(t, x)\right|=\mid X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}\right.\right. & +h, x))-X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}, x\right)\right) \mid \\
& \left.\leq \mid X^{\lambda}\left(t^{\prime}+h, x\right)\right)-X^{\lambda}\left(t^{\prime}, x\right) \mid
\end{aligned}
$$

and dividing by h and sending $h \rightarrow 0$ it follows

$$
\left|A_{\lambda} X(t, x)\right| \leq\left|A_{\lambda} X\left(t^{\prime}, x\right)\right| .
$$

Then from the inequality $\left|p_{\lambda}\right| \leq|p|$ of question 2. we deduce $\left|A_{\lambda} X(t, x)\right| \leq$ $\left|A_{0} x\right|$.
6. Using question 2., show that for $\lambda, \mu>0$ and for any $x \in \mathcal{X}, A_{\lambda} x=$ $A_{\mu}\left(x+(\mu-\lambda) A_{\lambda} x\right)$. Deduce that:

$$
\frac{\partial}{\partial t}\left|X^{\lambda}(t, x)-X^{\mu}(t, x)\right|^{2} \leq(\mu-\lambda)\left(\left|A_{\lambda} X^{\lambda}(t, x)\right|^{2}-\left|A_{\mu} X^{\mu}(t, x)\right|^{2}\right)
$$

(or any similar estimate) and in particular that if $x \in \operatorname{dom} A, \mid X^{\lambda}(t, x)-$ $X^{\mu}(t, x)|\leq C| A_{0} x \mid \sqrt{|\mu-\lambda| t}$ for some constant $C>0$.

What can you conclude? (Without justifying everything, unless there is still time.)

If $z=A_{\lambda} x=J_{A_{-1} / \lambda}(x / \lambda)$ (question 2.), then

$$
\begin{aligned}
& z+\frac{1}{\lambda} A^{-1} z \ni \frac{x}{\lambda} \Leftrightarrow \frac{\lambda}{\mu} z+\frac{1}{\mu} A^{-1} z \ni \frac{x}{\mu} \\
& \Leftrightarrow z+\frac{1}{\mu} A^{-1} z \ni \frac{x}{\mu}+\left(1-\frac{\lambda}{\mu}\right) z=\frac{x+(\mu-\lambda) z}{\mu} \\
& \Leftrightarrow z=J_{A^{-1} / \mu}\left(\frac{x+(\mu-\lambda) z}{\mu}\right)=A_{\mu}\left(x+(\mu-\lambda) A_{\lambda} x\right)
\end{aligned}
$$

As a consequence,

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left|X^{\lambda}(t, x)-X^{\mu}(t, x)\right|^{2}=-2\left\langle X^{\lambda}-X^{\mu}, A_{\mu}\left(X^{\lambda}+(\mu-\lambda) A_{\lambda} X^{\lambda}\right)-A_{\mu} X^{\mu}\right\rangle \\
=-2\left\langle\left(X^{\lambda}+(\mu-\lambda) A_{\lambda} X^{\lambda}\right)-X^{\mu}, A_{\mu}\left(X^{\lambda}+(\mu-\lambda) A_{\lambda} X^{\lambda}\right)-A_{\mu} X^{\mu}\right\rangle \\
+2(\mu-\lambda)\left\langle A_{\lambda} X^{\lambda}, A_{\lambda} X^{\lambda}-A_{\mu} X^{\mu}\right\rangle \\
\leq 2(\mu-\lambda)\left\langle A_{\lambda} X^{\lambda}, A_{\lambda} X^{\lambda}-A_{\mu} X^{\mu}\right\rangle
\end{array}
$$

Symmetrically,

$$
\frac{\partial}{\partial t}\left|X^{\lambda}(t, x)-X^{\mu}(t, x)\right|^{2} \leq 2(\lambda-\mu)\left\langle A_{\mu} X^{\mu}, A_{\mu} X^{\mu}-A_{\lambda} X^{\lambda}\right\rangle
$$

and averaging the two estimates we get the answer. Hence the time derivative is bounded by $|\lambda-\mu|\left|A_{0} x\right|^{2}$ and the estimate follows with $C=1$ (integrating from 0 to t).

It follows that as $\lambda \rightarrow 0, X^{\lambda}(x, t)$ is a Cauchy sequence in $C^{0}([0, T] ; \mathcal{X})$ (for any $T>0$), which converges uniformly to some continuous path $X(t, x)$. This path is a solution of $\partial_{t} X+A X \ni 0$: precisely one can show that satisfies for all $t \geq 0$:

$$
X(t, x)=x-\int_{0}^{t} A_{0} X(s, x) d s
$$

