
Introduction to Continuous optimization
Assessment

(6th January 2021)

Exercise I

We denote Rn×nsym the space of dimension n(n+1)/2 of symmetric n×n matrices.

We consider the scalar product X : Y =
∑
i,j Xi,jYi,j = Tr (XY ) (or Tr (XTY )

but it is the same here since X,Y are symmetric).
Let S+ ⊂ Rn×nsym be the set of n×n symmetric, positive semidefinite matrices:

X = XT , (Xξ) · ξ ≥ 0 for any ξ ∈ Rn. Let S++ be the interior of S+, that is,
the set of positive definite matrices: (Xξ) · ξ > 0 for all ξ 6= 0.

We let, for X ∈ Rn×nsym :

h(X) :=

{
− ln detX if X ∈ S++,

+∞ else.

1. Let X ∈ S++, H a symmetric matrix. Show that for t ∈ R with |t| small
enough, X + tH ∈ S++.

For ξ a vector, one has ((X+tH)ξ)·ξ = (Xξ)·ξ+t(Hξ)·ξ ≥ (λ1(X)−t‖H‖)|ξ|2 >
0 if t < λ1(X)/‖H‖, where λ1(X) > 0 is the smallest eigenvalue of X.

2. Using X + tH = X(I + tX−1H), show that

∇h(X) = −X−1.

We recall that det(I +A) = 1 + TrA+ o(‖A‖).

We have:

h(X + tH) = − ln det(X(I + tX−1H))

= − ln(det(X) det(I + tX−1H)) = h(X)− ln det(I + tX−1H)

= h(X)−ln(1+tTr (X−1H)+o(t)) = h(X)−tTr (X−1H)+o(t) = h(X)−tX−1 : H+o(t)

which shows the claim.

3. One now wants to compute the conjugate h∗(Y ) = supX X : Y − h(X).
Let Y ∈ Rn×nsym and assume e is an eigenvector of Y with eigenvalue λ ∈ R

(and |e| = 1).
Considering first X of the form te ⊗ e + εI (where for e ∈ Rn \ {0} with

|e| = 1, e ⊗ e is the matrix eiej which has eigenvector e with eigenvalue 1),
ε > 0, t→ +∞, show that h∗(Y ) = +∞ if λ ≥ 0.

Deduce that domh∗ ⊂ {Y : −Y ∈ S++}.

One has, for X = te ⊗ e + εI, detX = εn−1(t + ε) and X : Y − h(X) =
εTrX + tλ + (n − 1) ln ε + ln(ε + t) which goes to +∞ as t → ∞ if λ ≥ 0.
Hence, h∗(Y ) < +∞ only if all eigenvalues of Y are strictly negative, that is
−Y ∈ S++.
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4. Now, assuming −Y > 0 we admit (even if it is quite easy to show) that
supX X : Y − h(X) is reached at some positive matrix X.

Show that X = −Y −1. Deduce the expression of h∗. Deduce also that h is
convex.

At the maximum X one has ∇X(X : Y − h(X)) = Y − (−X−1) = 0 so that
Y = (−X−1)⇔ X = −Y −1. Then,

X : Y − h(X) = Tr (−Y −1Y ) + ln det(−Y −1) = −n− ln det(−Y ).

In particular, the function

Y 7→

{
−n− ln det(−Y ) if − Y ∈ S++

+∞ else.

is convex, and so is h(X) = n+ h∗(−X).

5. We consider the problem minX∈S+ C : X and the Bregman distance

Dh(X,Y ) = h(X)− h(Y )−∇h(Y ) : (X − Y )

induced by h, defined for X,Y ∈ S++. Write the expression of an iteration of
non-linear gradient descent for the problem, with step τ > 0, relative to the
Bregman distance Dh. Why can we always assume that C is symmetric? What
assumption is needed on C in order for the problem to have a solution (and the
algorithm to be well defined for all k)?

Xk+1 is obtained as (if it exists)

Xk+1 = arg min
X

1

τ
Dh(X,Xk) + C : X

and satisfies: −(Xk+1)−1 = −(Xk)−1 − τC, that is

Xk+1 = ((Xk)−1 + τC)−1

If C is not symmetric then C : X = CT : XT = CT : X = (C + CT ) : X/2 so
one can replace C with its symmetric part. If C has a negative eigenvalue, as
in the analysis of the previous question, the minimum problem has no solution
(the value is −∞) as soon as (X0)−1 + τkC has a negative eigenvalue. If C ≥ 0,
the iterates are Xk = ((X0)−1 + τkC)−1

Exercice II - prox

Compute the proximity operator (for some parameter τ > 0):

proxτg(x) = arg min
z
g(z) +

1

2τ
|z − x|2

for the convex functions:

1. g1(x) = − lnx for x > 0, +∞ else;

The equation is z − x − τ/z = 0, that is z2 − zx − τ = 0, that is z = (x +√
x2 + 4τ)/2.
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2. g2(x) =
∑n
i=1

1
3 |xi|

3, (x ∈ Rn);

The problem is:

min
z

n∑
i=1

1
3 |zi|

3 +
1

2τ
|zi − xi|2

and can be minimized independently for each i: the minimizer satisfies

τsign (zi)z
2
i + zi − xi = 0, i = 1, . . . , n.

Clearly the sign of zi is the same as the sign of xi (as τsign (zi)z
2
i + zi =

zi(τ |zi|+ 1) has the same sign as zi). Solving the equation one obtains:

zi = sign (xi)

√
1 + 4τ |xi| − 1

2τ
.

3. g3(x) =
∑n
i=1

2
3 |xi|

3/2, (x ∈ Rn);

g3 = g∗2 and one has the Moreau identity:

proxτg3(x) = x− τprox 1
τ g
∗
3
(xτ ).

Hence,

zi = xi−τsign (xi)

√
1 + (4/τ)|xi/τ | − 1

2/τ
= sign (xi)

(
|xi|+

τ

2

2
− τ

√
τ2 + 4|xi|

2

)

= sign (xi)
4|xi|+ τ2 + τ2 − 2τ

√
τ2 + 4|xi|

4
= sign (xi)

(√
τ2 + 4|xi| − τ

2

)2

The last expression is the one which is obtained directly if one solves the mini-
mization problem (without using Moreau’s identity).

4. g4(x) = 1
2

∑
i x

2
i if xi ≥ 0, i = 1, . . . , n, and +∞ else, defined for x ∈ Rn

(and with domain dom g4 = [0,+∞)n).

One solves:

min
zi≥0

∑
i

1
2z

2
i +

1

2τ
|zi − xi|2

which is solved independently for each i. The solution is zi = 0 if xi < 0,
otherwise, (1 + τ)zi − xi = 0, that is, zi = xi/(1 + τ). Hence, zi = x+i /(1 + τ).

Exercise III - rate for the proximal point algo-
rithm

We consider M a maximal-monotone operator, defined in a Hilbert space X .
Given x0 ∈ X , we let for k ≥ 0:

xk+1 = (I +M)−1xk

that is, the iterations of the proximal-point algorithm.
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1. Let x∗ be a zero, that is, a point such that Mx∗ 3 0 (we assume the set
M−1(0) is not empty). Show that x∗ = (I +M)−1(x∗) and that

|xk+1 − x∗|2 + |xk − xk+1|2 ≤ |xk − x∗|2.

One has x∗ + 0 = x∗, hence x∗ + Mx∗ 3 x∗, that is x∗ = (I + M)−1(x∗).
Denoting JM = (I +M)−1 we know that JM is “firmly non expansive”:

|JMx− JMx′|2 + |(I − JM )x− (I − JM )x′|2 ≤ |x− x′|2.

With x = xk and x′ = x∗ this gives the desired inequality.

2. Show that |xk+1 − xk| is a decreasing function of k ≥ 0.

This is even easier: if k ≥ 1, |xk+1 − xk| = |JMxk − JMxk−1| ≤ |xk − xk−1|
since JM is one-Lipschitz.

3. Deduce that

|xk+1 − xk| ≤ |x
0 − x∗|√
k + 1

.

We sum the inequality of the first question:

|xk+1 − x∗|2 +

k∑
l=0

|xl − xl+1|2 ≤ |x0 − x∗|2

then we use the second question to observe that
∑k
l=0 |xl−xl+1|2 ≥ (k+1)|xk−

xk+1|2.

4. Let xkl be a (weakly) converging subsequence, to some point x̄. Show that
for any x′ ∈ X and y′ ∈Mx′,

〈x′ − x̄, y′〉 ≥ 0.

Deduce that 0 ∈Mx̄.

Since M is monotone and xk−xk+1 ∈Mxk+1,
〈
x′ − xkl , y′ − (xkl − xkl+1)

〉
≥ 0

and in the limit, thanks to the previous estimate, we obtain the inequality (we
have a product (weak convergence)×(strong convergence)).

Since M is maximal-monotone, it means that 0 ∈Mx̄ (otherwise one could
extend the graph). (Of course, using Opial’s lemma, one can then show that
xk → x̄, weakly.)

5. Let T : X → X be a 1-Lipschitz operator and, for θ ∈ (0, 1), let Tθ =
(1− θ)I + θT . Let x∗ be a fixed point of T (and therefore also of Tθ for any θ).
We now consider the algorithm given by

xk+1 = Tθx
k.

Use the parallelogram identity to show that:

|xk+1 − x∗|2 ≤ |xk − x∗|2 − θ(1− θ)|Txk − xk|2
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One has

|xk+1 − x∗|2 = |(1− θ)(xk − x∗) + θ(Txk − x∗)|2

= (1− θ)|xk − x∗|2 + θ|Txk − x∗|2 − θ(1− θ)|Txk − xk|2

and one uses |Txk − x∗| = |Txk − T ∗| ≤ |xk − x∗| to conclude.

6. As before, deduce that:

|Txk − xk| ≤ |x0 − x∗|√
θ(1− θ)

√
k + 1

.

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar
estimate holds in any metric space, but it is much harder).

As in question 2., one has |xk+1 − xk| ≤ |xk − xk−1| for k ≥ 1, using that Tθ is
1-Lipschitz. We deduce |Txk − xk| ≤ |Txk−1 − xk−1|. Thus,

θ(1− θ)(k + 1)|Txk − xk|θ(1− θ)
k∑
l=0

|Txl − xl|+ |xk+1 − x∗|2 ≤ |x0 − x∗|2

7. Application: show that the over-relaxed proximal point algorithm:

xk+
1
2 = (I +M)−1xk

xk+1 = xk + λ(xk+
1
2 − xk)

for 1 < λ < 2 is a converging method.

We know that (I +M)−1 = I/2 +R/2 for a 1-Lipschitz map R. Then,

xk+1 = xk + λ
2 (Rxk − xk) = (1− λ

2 )xk + λ
2Rx

k = Rλ
2

xk

is the iteration of an averaged operator, and we can use the previous results to
show that xk+1 − xk → 0. Then, we can conclude as in question 4.

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the
Yosida approximation, for λ > 0, as

Aλx =
x− JλAx

λ

where JλA = (I + λA)−1 is the resolvent.

1. Show that Aλ is a monotone operator.

This is because JλA is 1-Lipschitz. Then, for any x, y,

〈Aλx−Aλy, x− y〉 = 1
λ (|x− y|2 − 〈JλAx− JλAy, x− y〉) ≥ 0

using that 〈JλAx− JλAy, x− y〉 ≤ |JλAx− JλAy||x− y| ≤ |x− y|2.
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2. Show that Aλx = JA−1/λ(x/λ). Deduce that it is (1/λ)-Lipschitz. Bonus:
show that it is λ-co-coercive.

We use Moreau’s identity:

x = (I + λA)−1x+ λ(I + 1
λA
−1)−1(xλ ) = JλAx+ λJA−1/λ(xλ ).

We conclude using that J• is 1-Lipschitz.

3. Let x ∈ domA (that is, Ax 6= ∅). Show that

lim
λ→0

Aλx = A0x := arg min
p∈Ax

|p|.

Hint: first, show that if pλ = Aλx then pλ ∈ A(x−λpλ). Using the monotonicity
of A, deduce that for any p ∈ Ax, |pλ|2 ≤ 〈pλ, p〉, hence that |pλ| ≤ |p|. Conclude
by using that A is maximal.

One has pλ = (x−JλAx)/λ, hence (I+λA)(x−λpλ) 3 x, that is, pλ ∈ A(x−λpλ).
Since A is monotone, for any y and q ∈ Ay,

〈q − pλ, y − x+ λpλ〉 ≥ 0. (∗)

In particular for y = x, q = p ∈ Ax,

〈p, pλ〉 ≥ |pλ|2 ⇒ |pλ| ≤ |p|.

Hence in the limit, if pλk → p̄, we find from (∗) that

〈q − p̄, y − x〉 ≥ 0

and |p̄| ≤ |p| for any p ∈ Ax. Since A is maximal, we deduce that p̄ ∈ Ax,
so that it is the (unique) element of minimal norm, and the whole sequence pλ
converges to p̄.

4. Contraction semigroup: since Aλ is Lipschitz, by the Cauchy-Lipschitz the-
orem, one can solve for all x ∈ X :{

Ẋλ(t, x) = −AλXλ(t, x) t > 0,

Xλ(0, x) = x

and the solution, which is at least C1 in time, satisfies:

Xλ(t, x) = x−
∫ t

0

AλX
λ(s, x)ds = Xλ(t′, x)−

∫ t−t′

0

AλX
λ(s,Xλ(t′, x))ds

for any t′ < t. In particular, Xλ(t, x) = Xλ(t− t′, Xλ(t′, x)).

Show that for any x, y ∈ X , t 7→ |Xλ(t, x) − Xλ(t, y)|2 is non-increasing.
Deduce that |Xλ(t, x)−Xλ(t, y)| ≤ |x− y| for all t ≥ 0.

One simply observes that because Aλ is monotone:

1

2

∂

∂t
|Xλ(t, x)−Xλ(t, y)|2 = −

〈
Xλ(t, x)−Xλ(t, y), AλX

λ(t, x)−AλXλ(t, y)
〉
≤ 0.

Then, we deduce

|Xλ(t, x)−Xλ(t, y)| ≤ |Xλ(0, x)−Xλ(0, y)| = |x− y|.
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5. Show that t 7→ |AλXλ(t, x)| is nonincreasing. If x ∈ domA, show that
|AλX(t, x)| ≤ |A0x| for all λ > 0 and t ≥ 0.
Hint: use that

Xλ(t+ h, x)−Xλ(t, x) = Xλ(t− t′, Xλ(t′ + h, x))−Xλ(t− t′, Xλ(t′, x))

for any h > 0, t, t′ < t, and the previous question.

The contraction semi-group property shows that

|Xλ(t+ h, x)−Xλ(t, x)| = |Xλ(t− t′, Xλ(t′ + h, x))−Xλ(t− t′, Xλ(t′, x))|
≤ |Xλ(t′ + h, x))−Xλ(t′, x)|

and dividing by h and sending h→ 0 it follows

|AλX(t, x)| ≤ |AλX(t′, x)|.

Then from the inequality |pλ| ≤ |p| of question 2. we deduce |AλX(t, x)| ≤
|A0x|.

6. Using question 2., show that for λ, µ > 0 and for any x ∈ X , Aλx =
Aµ(x+ (µ− λ)Aλx). Deduce that:

∂

∂t
|Xλ(t, x)−Xµ(t, x)|2 ≤ (µ− λ)(|AλXλ(t, x)|2 − |AµXµ(t, x)|2)

(or any similar estimate) and in particular that if x ∈ domA, |Xλ(t, x) −
Xµ(t, x)| ≤ C|A0x|

√
|µ− λ|t for some constant C > 0.

What can you conclude? (Without justifying everything, unless there is still
time.)

If z = Aλx = JA−1/λ(x/λ) (question 2.), then

z + 1
λA
−1z 3 x

λ ⇔
λ
µz + 1

µA
−1z 3 x

µ

⇔ z + 1
µA
−1z 3 x

µ + (1− λ
µ )z = x+(µ−λ)z

µ

⇔ z = JA−1/µ(x+(µ−λ)z
µ ) = Aµ(x+ (µ− λ)Aλx)

As a consequence,

∂

∂t
|Xλ(t, x)−Xµ(t, x)|2 = −2

〈
Xλ −Xµ, Aµ(Xλ + (µ− λ)AλX

λ)−AµXµ
〉

= −2
〈
(Xλ + (µ− λ)AλX

λ)−Xµ, Aµ(Xλ + (µ− λ)AλX
λ)−AµXµ

〉
+ 2(µ− λ)

〈
AλX

λ, AλX
λ −AµXµ

〉
≤ 2(µ− λ)

〈
AλX

λ, AλX
λ −AµXµ

〉
.

Symmetrically,

∂

∂t
|Xλ(t, x)−Xµ(t, x)|2 ≤ 2(λ− µ)

〈
AµX

µ, AµX
µ −AλXλ

〉
and averaging the two estimates we get the answer. Hence the time derivative
is bounded by |λ − µ||A0x|2 and the estimate follows with C = 1 (integrating
from 0 to t).
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It follows that as λ→ 0, Xλ(x, t) is a Cauchy sequence in C0([0, T ];X ) (for
any T > 0), which converges uniformly to some continuous path X(t, x). This
path is a solution of ∂tX +AX 3 0: precisely one can show that satisfies for all
t ≥ 0:

X(t, x) = x−
∫ t

0

A0X(s, x)ds.
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