Introduction to Continuous optimization Assessment

(6th January 2021)

Exercise I

We denote $\mathbb{R}_{\text{sym}}^{n \times n}$ the space of dimension n(n+1)/2 of symmetric $n \times n$ matrices. We consider the scalar product $X : Y = \sum_{i,j} X_{i,j} Y_{i,j} = \text{Tr}(XY)$ (or $\text{Tr}(X^TY)$) but it is the same here since X, Y are symmetric).

Let $\mathcal{S}_+ \subset \mathbb{R}^{n \times n}_{\text{sym}}$ be the set of $n \times n$ symmetric, positive semidefinite matrices: $X = X^T$, $(X\xi) \cdot \xi \ge 0$ for any $\xi \in \mathbb{R}^n$. Let \mathcal{S}_{++} be the interior of \mathcal{S}_+ , that is, the set of positive definite matrices: $(X\xi) \cdot \xi > 0$ for all $\xi \neq 0$.

We let, for $X \in \mathbb{R}^{n \times n}_{sym}$:

$$h(X) := \begin{cases} -\ln \det X & \text{if } X \in \mathcal{S}_{++}, \\ +\infty & \text{else.} \end{cases}$$

1. Let $X \in S_{++}$, H a symmetric matrix. Show that for $t \in \mathbb{R}$ with |t| small enough, $X + tH \in S_{++}$.

2. Using $X + tH = X(I + tX^{-1}H)$, show that

$$\nabla h(X) = -X^{-1}.$$

We recall that det(I + A) = 1 + Tr A + o(||A||).

3. One now wants to compute the conjugate $h^*(Y) = \sup_X X : Y - h(X)$. Let $Y \in \mathbb{R}^{n \times n}_{\text{sym}}$ and assume e is an eigenvector of Y with eigenvalue $\lambda \in \mathbb{R}$

(and |e| = 1). Considering first X of the form $te \otimes e + \varepsilon I$ (where for $e \in \mathbb{R}^n \setminus \{0\}$ with $|e| = 1, \ e \otimes e$ is the matrix $e_i e_j$ which has eigenvector e with eigenvalue 1), $\varepsilon > 0, \ t \to +\infty$, show that $h^*(Y) = +\infty$ if $\lambda \ge 0$. Deduce that dom $h^* \subset \{Y : -Y \in \mathcal{S}_{++}\}$.

4. Now, assuming -Y > 0 we admit (even if it is quite easy to show) that $\sup_X X : Y - h(X)$ is reached at some positive matrix X.

Show that $X = -Y^{-1}$. Deduce the expression of h^* . Deduce also that h is convex.

5. We consider the problem $\min_{X \in S_{+}} C : X$ and the Bregman distance

$$D_h(X,Y) = h(X) - h(Y) - \nabla h(Y) : (X - Y)$$

induced by h, defined for $X, Y \in S_{++}$. Write the expression of an iteration of non-linear gradient descent for the problem, with step $\tau > 0$, relative to the Bregman distance D_h . Why can we always assume that C is symmetric? What assumption is needed on C in order for the problem to have a solution (and the algorithm to be well defined for all k)?

Exercice II - prox

Compute the proximity operator (for some parameter $\tau > 0$):

$$\operatorname{prox}_{\tau g}(x) = \arg\min_{z} g(z) + \frac{1}{2\tau} |z - x|^2$$

for the convex functions:

- 1. $g_1(x) = -\ln x$ for $x > 0, +\infty$ else;
- **2.** $g_2(x) = \sum_{i=1}^n \frac{1}{3} |x_i|^3, (x \in \mathbb{R}^n);$
- **3.** $g_3(x) = \sum_{i=1}^n \frac{2}{3} |x_i|^{3/2}, (x \in \mathbb{R}^n);$

4. $g_4(x) = \frac{1}{2} \sum_i x_i^2$ if $x_i \ge 0$, $i = 1, \ldots, n$, and $+\infty$ else, defined for $x \in \mathbb{R}^n$ (and with domain dom $g_4 = [0, +\infty)^n$).

Exercise III - rate for the proximal point algorithm

We consider M a maximal-monotone operator, defined in a Hilbert space \mathcal{X} . Given $x^0 \in \mathcal{X}$, we let for $k \ge 0$:

$$x^{k+1} = (I+M)^{-1}x^k$$

that is, the iterations of the proximal-point algorithm.

1. Let x^* be a zero, that is, a point such that $Mx^* \ni 0$ (we assume the set $M^{-1}(0)$ is not empty). Show that $x^* = (I + M)^{-1}(x^*)$ and that

$$|x^{k+1} - x^*|^2 + |x^k - x^{k+1}|^2 \le |x^k - x^*|^2.$$

- **2.** Show that $|x^{k+1} x^k|$ is a decreasing function of $k \ge 0$.
- **3.** Deduce that

$$|x^{k+1} - x^k| \le \frac{|x^0 - x^*|}{\sqrt{k+1}}.$$

4. Let x^{k_l} be a (weakly) converging subsequence, to some point \bar{x} . Show that for any $x' \in \mathcal{X}$ and $y' \in Mx'$,

$$\langle x' - \bar{x}, y' \rangle \ge 0$$

Deduce that $0 \in M\bar{x}$.

5. Let $T : \mathcal{X} \to \mathcal{X}$ be a 1-Lipschitz operator and, for $\theta \in (0, 1)$, let $T_{\theta} = (1 - \theta)I + \theta T$. Let x^* be a fixed point of T (and therefore also of T_{θ} for any θ). We now consider the algorithm given by

$$x^{k+1} = T_{\theta} x^k.$$

Use the parallelogram identity to show that:

$$|x^{k+1} - x^*|^2 \le |x^k - x^*|^2 - \theta(1-\theta)|Tx^k - x^k|^2$$

6. As before, deduce that:

$$|Tx^k - x^k| \le \frac{|x^0 - x^*|}{\sqrt{\theta(1-\theta)}\sqrt{k+1}}$$

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar estimate holds in any metric space, but it is much harder).

7. Application: show that the over-relaxed proximal point algorithm:

$$x^{k+\frac{1}{2}} = (I+M)^{-1}x^k$$
$$x^{k+1} = x^k + \lambda(x^{k+\frac{1}{2}} - x^k)$$

for $1 < \lambda < 2$ is a converging method.

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the Yosida approximation, for $\lambda > 0$, as

$$A_{\lambda}x = \frac{x - J_{\lambda A}x}{\lambda}$$

where $J_{\lambda A} = (I + \lambda A)^{-1}$ is the resolvent.

1. Show that A_{λ} is a monotone operator.

2. Show that $A_{\lambda}x = J_{A^{-1}/\lambda}(x/\lambda)$. Deduce that it is $(1/\lambda)$ -Lipschitz. Bonus: show that it is λ -co-coercive.

3. Let $x \in \text{dom } A$ (that is, $Ax \neq \emptyset$). Show that

$$\lim_{\lambda \to 0} A_{\lambda} x = A_0 x := \arg \min_{p \in Ax} |p|.$$

Hint: first, show that if $p_{\lambda} = A_{\lambda}x$ then $p_{\lambda} \in A(x - \lambda p_{\lambda})$. Using the monotonicity of A, deduce that for any $p \in Ax$, $|p_{\lambda}|^2 \leq \langle p_{\lambda}, p \rangle$, hence that $|p_{\lambda}| \leq |p|$. Conclude by using that A is maximal.

4. Contraction semigroup: since A_{λ} is Lipschitz, by the Cauchy-Lipschitz theorem, one can solve for all $x \in \mathcal{X}$:

$$\begin{cases} \dot{X^{\lambda}}(t,x) = -A_{\lambda}X^{\lambda}(t,x) \qquad t > 0, \\ X^{\lambda}(0,x) = x \end{cases}$$

and the solution, which is at least C^1 in time, satisfies:

$$X^{\lambda}(t,x) = x - \int_0^t A_{\lambda} X^{\lambda}(s,x) ds = X^{\lambda}(t',x) - \int_0^{t-t'} A_{\lambda} X^{\lambda}(s,X^{\lambda}(t',x)) ds$$

for any t' < t. In particular, $X^{\lambda}(t, x) = X^{\lambda}(t - t', X^{\lambda}(t', x))$.

Show that for any $x, y \in \mathcal{X}, t \mapsto |X^{\lambda}(t, x) - X^{\lambda}(t, y)|^2$ is non-increasing. Deduce that $|X^{\lambda}(t, x) - X^{\lambda}(t, y)| \leq |x - y|$ for all $t \geq 0$.

5. Show that $t \mapsto |A_{\lambda}X^{\lambda}(t,x)|$ is nonincreasing. If $x \in \text{dom } A$, show that $|A_{\lambda}X(t,x)| \leq |A_0x|$ for all $\lambda > 0$ and $t \geq 0$. *Hint:* use that

$$X^{\lambda}(t+h,x) - X^{\lambda}(t,x) = X^{\lambda}(t-t',X^{\lambda}(t'+h,x)) - X^{\lambda}(t-t',X^{\lambda}(t',x))$$

for any h > 0, t, t' < t, and the previous question.

6. Using question **2.**, show that for $\lambda, \mu > 0$ and for any $x \in \mathcal{X}$, $A_{\lambda}x = A_{\mu}(x + (\mu - \lambda)A_{\lambda}x)$. Deduce that:

$$\frac{\partial}{\partial t}|X^{\lambda}(t,x) - X^{\mu}(t,x)|^{2} \le (\mu - \lambda)(|A_{\lambda}X^{\lambda}(t,x)|^{2} - |A_{\mu}X^{\mu}(t,x)|^{2})$$

(or any similar estimate) and in particular that if $x \in \text{dom } A$, $|X^{\lambda}(t,x) - X^{\mu}(t,x)| \leq C |A_0 x| \sqrt{|\mu - \lambda| t}$ for some constant C > 0.

What can you conclude? (Without justifying everything, unless there is still time.)