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(6th January 2021)

Exercise I

We denote Rn×n
sym the space of dimension n(n+1)/2 of symmetric n×n matrices.

We consider the scalar product X : Y =
∑

i,j Xi,jYi,j = Tr (XY ) (or Tr (XTY )
but it is the same here since X,Y are symmetric).

Let S+ ⊂ Rn×n
sym be the set of n×n symmetric, positive semidefinite matrices:

X = XT , (Xξ) · ξ ≥ 0 for any ξ ∈ Rn. Let S++ be the interior of S+, that is,
the set of positive definite matrices: (Xξ) · ξ > 0 for all ξ ̸= 0.

We let, for X ∈ Rn×n
sym :

h(X) :=

{
− ln detX if X ∈ S++,

+∞ else.

1. Let X ∈ S++, H a symmetric matrix. Show that for t ∈ R with |t| small
enough, X + tH ∈ S++.

2. Using X + tH = X(I + tX−1H), show that

∇h(X) = −X−1.

We recall that det(I +A) = 1 + TrA+ o(∥A∥).

3. One now wants to compute the conjugate h∗(Y ) = supX X : Y − h(X).
Let Y ∈ Rn×n

sym and assume e is an eigenvector of Y with eigenvalue λ ∈ R
(and |e| = 1).

Considering first X of the form te ⊗ e + εI (where for e ∈ Rn \ {0} with
|e| = 1, e ⊗ e is the matrix eiej which has eigenvector e with eigenvalue 1),
ε > 0, t → +∞, show that h∗(Y ) = +∞ if λ ≥ 0.

Deduce that domh∗ ⊂ {Y : −Y ∈ S++}.

4. Now, assuming −Y > 0 we admit (even if it is quite easy to show) that
supX X : Y − h(X) is reached at some positive matrix X.

Show that X = −Y −1. Deduce the expression of h∗. Deduce also that h is
convex.

5. We consider the problem minX∈S+
C : X and the Bregman distance

Dh(X,Y ) = h(X)− h(Y )−∇h(Y ) : (X − Y )

induced by h, defined for X,Y ∈ S++. Write the expression of an iteration of
non-linear gradient descent for the problem, with step τ > 0, relative to the
Bregman distance Dh. Why can we always assume that C is symmetric? What
assumption is needed on C in order for the problem to have a solution (and the
algorithm to be well defined for all k)?
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Exercice II - prox

Compute the proximity operator (for some parameter τ > 0):

proxτg(x) = argmin
z

g(z) +
1

2τ
|z − x|2

for the convex functions:

1. g1(x) = − lnx for x > 0, +∞ else;

2. g2(x) =
∑n

i=1
1
3 |xi|3, (x ∈ Rn);

3. g3(x) =
∑n

i=1
2
3 |xi|3/2, (x ∈ Rn);

4. g4(x) =
1
2

∑
i x

2
i if xi ≥ 0, i = 1, . . . , n, and +∞ else, defined for x ∈ Rn

(and with domain dom g4 = [0,+∞)n).

Exercise III - rate for the proximal point algo-
rithm

We consider M a maximal-monotone operator, defined in a Hilbert space X .
Given x0 ∈ X , we let for k ≥ 0:

xk+1 = (I +M)−1xk

that is, the iterations of the proximal-point algorithm.

1. Let x∗ be a zero, that is, a point such that Mx∗ ∋ 0 (we assume the set
M−1(0) is not empty). Show that x∗ = (I +M)−1(x∗) and that

|xk+1 − x∗|2 + |xk − xk+1|2 ≤ |xk − x∗|2.

2. Show that |xk+1 − xk| is a decreasing function of k ≥ 0.

3. Deduce that

|xk+1 − xk| ≤ |x0 − x∗|√
k + 1

.

4. Let xkl be a (weakly) converging subsequence, to some point x̄. Show that
for any x′ ∈ X and y′ ∈ Mx′,

⟨x′ − x̄, y′⟩ ≥ 0.

Deduce that 0 ∈ Mx̄.
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5. Let T : X → X be a 1-Lipschitz operator and, for θ ∈ (0, 1), let Tθ =
(1− θ)I + θT . Let x∗ be a fixed point of T (and therefore also of Tθ for any θ).
We now consider the algorithm given by

xk+1 = Tθx
k.

Use the parallelogram identity to show that:

|xk+1 − x∗|2 ≤ |xk − x∗|2 − θ(1− θ)|Txk − xk|2

6. As before, deduce that:

|Txk − xk| ≤ |x0 − x∗|√
θ(1− θ)

√
k + 1

.

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar
estimate holds in any metric space, but it is much harder).

7. Application: show that the over-relaxed proximal point algorithm:

xk+ 1
2 = (I +M)−1xk

xk+1 = xk + λ(xk+ 1
2 − xk)

for 1 < λ < 2 is a converging method.

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the
Yosida approximation, for λ > 0, as

Aλx =
x− JλAx

λ

where JλA = (I + λA)−1 is the resolvent.

1. Show that Aλ is a monotone operator.

2. Show that Aλx = JA−1/λ(x/λ). Deduce that it is (1/λ)-Lipschitz. Bonus:
show that it is λ-co-coercive.

3. Let x ∈ domA (that is, Ax ̸= ∅). Show that

lim
λ→0

Aλx = A0x := arg min
p∈Ax

|p|.

Hint: first, show that if pλ = Aλx then pλ ∈ A(x−λpλ). Using the monotonicity
of A, deduce that for any p ∈ Ax, |pλ|2 ≤ ⟨pλ, p⟩, hence that |pλ| ≤ |p|. Conclude
by using that A is maximal.
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4. Contraction semigroup: since Aλ is Lipschitz, by the Cauchy-Lipschitz the-
orem, one can solve for all x ∈ X :{

Ẋλ(t, x) = −AλX
λ(t, x) t > 0,

Xλ(0, x) = x

and the solution, which is at least C1 in time, satisfies:

Xλ(t, x) = x−
∫ t

0

AλX
λ(s, x)ds = Xλ(t′, x)−

∫ t−t′

0

AλX
λ(s,Xλ(t′, x))ds

for any t′ < t. In particular, Xλ(t, x) = Xλ(t− t′, Xλ(t′, x)).

Show that for any x, y ∈ X , t 7→ |Xλ(t, x) − Xλ(t, y)|2 is non-increasing.
Deduce that |Xλ(t, x)−Xλ(t, y)| ≤ |x− y| for all t ≥ 0.

5. Show that t 7→ |AλX
λ(t, x)| is nonincreasing. If x ∈ domA, show that

|AλX(t, x)| ≤ |A0x| for all λ > 0 and t ≥ 0.
Hint: use that

Xλ(t+ h, x)−Xλ(t, x) = Xλ(t− t′, Xλ(t′ + h, x))−Xλ(t− t′, Xλ(t′, x))

for any h > 0, t, t′ < t, and the previous question.

6. Using question 2., show that for λ, µ > 0 and for any x ∈ X , Aλx =
Aµ(x+ (µ− λ)Aλx). Deduce that:

∂

∂t
|Xλ(t, x)−Xµ(t, x)|2 ≤ (µ− λ)(|AλX

λ(t, x)|2 − |AµX
µ(t, x)|2)

(or any similar estimate) and in particular that if x ∈ domA, |Xλ(t, x) −
Xµ(t, x)| ≤ C|A0x|

√
|µ− λ|t for some constant C > 0.

What can you conclude? (Without justifying everything, unless there is still
time.)
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