Introduction to Continuous optimization
Assessment
(6th January 2021)

Exercise 1

We denote R\ the space of dimension n(n+1)/2 of symmetric n x n matrices.
We consider the scalar product X : Y =37, - X; ;Y ; = Tr (XY) (or Tr (XTY)
but it is the same here since X, Y are symmetric).

Let S C R be the set of n x n symmetric, positive semidefinite matrices:
X = XT, (X¢)- ¢ >0 for any € € R™. Let S, be the interior of S, that is,
the set of positive definite matrices: (X¢)-£ > 0 for all £ # 0.

We let, for X € RE™

hX) i {—lndetX if X €Sy,
+00 else.

1. Let X € S;4, H a symmetric matrix. Show that for ¢ € R with |¢| small
enough, X +tH € S, .

2. Using X +tH = X(I +tX1H), show that
Vh(X)=-X"1

We recall that det(I + A) =14 Tr A+ o(||4])).

3. Omne now wants to compute the conjugate h*(Y) =supy X : ¥ — h(X).

Let Y € R and assume e is an eigenvector of Y with eigenvalue A € R
(and |e| =1).

Considering first X of the form te ® e + €I (where for e € R™ \ {0} with
le] = 1, e ® e is the matrix e;e; which has eigenvector e with eigenvalue 1),
€ >0, t = 400, show that h*(Y) = 400 if A > 0.

Deduce that domh* C {Y : =Y € S;4}.

4. Now, assuming —Y > 0 we admit (even if it is quite easy to show) that
supy X : Y — h(X) is reached at some positive matrix X.

Show that X = —Y ~!. Deduce the expression of h*. Deduce also that h is
convex.

5. We consider the problem minxes, €' : X and the Bregman distance
DX, Y)=h(X)—h(Y)—-VR(Y): (X -Y)

induced by h, defined for XY € S;4. Write the expression of an iteration of
non-linear gradient descent for the problem, with step 7 > 0, relative to the
Bregman distance Dj. Why can we always assume that C is symmetric? What
assumption is needed on C' in order for the problem to have a solution (and the
algorithm to be well defined for all k)?



Exercice 1I - prox

Compute the proximity operator (for some parameter 7 > 0):
. 1 2
prox, (r) = arg mzlng(z) + E\z — |
for the convex functions:
1. gi(x) = —Ilnz for x > 0, +oo else;
2. gpz)=3", %|xi|3, (z € R");

3. gs(w) =0 Fluil?, (z € RY);

Lo

ga(z) = 1>, 22 if 2, > 0,4 =1,...,n, and +o0 else, defined for z € R®
(and with domain dom g4 = [0, +00)™).

Exercise III - rate for the proximal point algo-
rithm

We consider M a maximal-monotone operator, defined in a Hilbert space X
Given z° € X, we let for k > 0:

szrl — (I+M)71xk

that is, the iterations of the proximal-point algorithm.

1. Let z* be a zero, that is, a point such that Mz* 5 0 (we assume the set
M~1(0) is not empty). Show that z* = (I + M)~!(z*) and that

|.Z'k+1 _ x*‘2 + ‘.’Ek _ .Z'k+1|2 < ‘(L‘k _ x*|2_
2. Show that |z**1 — z¥| is a decreasing function of k > 0.

3. Deduce that

2% — 27|

VE+1

|1‘k+1 —ka‘ <

4. Let 2 be a (weakly) converging subsequence, to some point Z. Show that
for any 2’ € X and vy € Ma/,

Deduce that 0 € Mz.



5. Let T : X — X be a 1-Lipschitz operator and, for § € (0,1), let Tp =
(1—6)I+0T. Let 2* be a fixed point of T' (and therefore also of T for any 6).
We now consider the algorithm given by

2Pt = Tgxk .
Use the parallelogram identity to show that:

‘.Z‘]H_l —$*|2 S |$k —l'*‘Q _9(1 —9)‘T{L‘k —.Z‘k 2

6. As before, deduce that:

‘T:ka.’bk| < |.’EO—.’E*|

TV -0)VE+1

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar
estimate holds in any metric space, but it is much harder).

7. Application: show that the over-relaxed proximal point algorithm:
xk-‘r% _ (I+ M)_lxk
aF = F 4 A(@ME - 2F)

for 1 < A < 2 is a converging method.

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the
Yosida approximation, for A > 0, as

xr — J,\Al‘

A)\.”L' = N\

where Jya = (I + M\A)~! is the resolvent.
1. Show that A, is a monotone operator.

2. Show that Az = Jy-1/5(x/A). Deduce that it is (1/))-Lipschitz. Bonus:
show that it is A-co-coercive.

3. Let z € dom A (that is, Az # 0)). Show that

1. A = A = 1 .
lim Axe = Aoz := arg min |p|
Hint: first, show that if py = Az then py € A(x—Apy). Using the monotonicity
of A, deduce that for any p € Ax, |px|? < (px, p), hence that |py| < |p|. Conclude
by using that A is maximal.



4. Contraction semigroup: since A, is Lipschitz, by the Cauchy-Lipschitz the-
orem, one can solve for all x € X

XMt x) = —A\ X Mt,x) >0,
XN0,z) ==z

and the solution, which is at least C'! in time, satisfies:
t t—t'
XMt,a) = 2 — / ANXA(s,2)ds = XMt z) — / Ay X (s, XMW, ) ds
0 0

for any #' < t. In particular, X*(¢,z) = X (¢t — ¢/, X (¢, 1)).

Show that for any =,y € X, t = |X*(t,r) — X*(t,y)|? is non-increasing.
Deduce that | X*(¢,z) — X (t,y)| < |z — y| for all t > 0.

5. Show that t ++ |A\X?(¢,7)| is nonincreasing. If 2 € dom A, show that
|AxX (t,z)| < |Apz| for all A > 0 and ¢t > 0.
Hint: use that

XAt +h,x) — XMt,z) = XMt —t, X Nt + h,z)) — XNt —t/, XNV, x))

for any h > 0, t, t’ < t, and the previous question.

6. Using question 2., show that for A\,u > 0 and for any x € X, Ayx =
A, (x + (p — A)Axz). Deduce that:

%IXX(W) = XUt a)]? < (= N (ANXAE )P = [AXH (¢, 2) )

(or any similar estimate) and in particular that if 2 € dom A, |X*(t,z) —
X*H(t,z)| < ClAox|+/|p — Alt for some constant C' > 0.

What can you conclude? (Without justifying everything, unless there is still
time.)



