Introduction to Continuous optimization

Assessment
(6th January 2021)

Exercise I

We denote $\mathbb{R}_{\text {sym }}^{n \times n}$ the space of dimension $n(n+1) / 2$ of symmetric $n \times n$ matrices. We consider the scalar product $X: Y=\sum_{i, j} X_{i, j} Y_{i, j}=\operatorname{Tr}(X Y)$ (or $\operatorname{Tr}\left(X^{T} Y\right)$ but it is the same here since X, Y are symmetric).

Let $\mathcal{S}_{+} \subset \mathbb{R}_{\text {sym }}^{n \times n}$ be the set of $n \times n$ symmetric, positive semidefinite matrices: $X=X^{T},(X \xi) \cdot \xi \geq 0$ for any $\xi \in \mathbb{R}^{n}$. Let \mathcal{S}_{++}be the interior of \mathcal{S}_{+}, that is, the set of positive definite matrices: $(X \xi) \cdot \xi>0$ for all $\xi \neq 0$.

We let, for $X \in \mathbb{R}_{\text {sym }}^{n \times n}$:

$$
h(X):= \begin{cases}-\ln \operatorname{det} X & \text { if } X \in \mathcal{S}_{++} \\ +\infty & \text { else }\end{cases}
$$

1. Let $X \in \mathcal{S}_{++}, H$ a symmetric matrix. Show that for $t \in \mathbb{R}$ with $|t|$ small enough, $X+t H \in \mathcal{S}_{++}$.
2. Using $X+t H=X\left(I+t X^{-1} H\right)$, show that

$$
\nabla h(X)=-X^{-1}
$$

We recall that $\operatorname{det}(I+A)=1+\operatorname{Tr} A+o(\|A\|)$.
3. One now wants to compute the conjugate $h^{*}(Y)=\sup _{X} X: Y-h(X)$.

Let $Y \in \mathbb{R}_{\text {sym }}^{n \times n}$ and assume e is an eigenvector of Y with eigenvalue $\lambda \in \mathbb{R}$ (and $|e|=1$).

Considering first X of the form $t e \otimes e+\varepsilon I$ (where for $e \in \mathbb{R}^{n} \backslash\{0\}$ with $|e|=1, e \otimes e$ is the matrix $e_{i} e_{j}$ which has eigenvector e with eigenvalue 1), $\varepsilon>0, t \rightarrow+\infty$, show that $h^{*}(Y)=+\infty$ if $\lambda \geq 0$.

Deduce that dom $h^{*} \subset\left\{Y:-Y \in \mathcal{S}_{++}\right\}$.
4. Now, assuming $-Y>0$ we admit (even if it is quite easy to show) that $\sup _{X} X: Y-h(X)$ is reached at some positive matrix X.

Show that $X=-Y^{-1}$. Deduce the expression of h^{*}. Deduce also that h is convex.
5. We consider the problem $\min _{X \in \mathcal{S}_{+}} C: X$ and the Bregman distance

$$
D_{h}(X, Y)=h(X)-h(Y)-\nabla h(Y):(X-Y)
$$

induced by h, defined for $X, Y \in \mathcal{S}_{++}$. Write the expression of an iteration of non-linear gradient descent for the problem, with step $\tau>0$, relative to the Bregman distance D_{h}. Why can we always assume that C is symmetric? What assumption is needed on C in order for the problem to have a solution (and the algorithm to be well defined for all k)?

Exercice II - prox

Compute the proximity operator (for some parameter $\tau>0$):

$$
\operatorname{prox}_{\tau g}(x)=\arg \min _{z} g(z)+\frac{1}{2 \tau}|z-x|^{2}
$$

for the convex functions:

1. $g_{1}(x)=-\ln x$ for $x>0,+\infty$ else;
2. $g_{2}(x)=\sum_{i=1}^{n} \frac{1}{3}\left|x_{i}\right|^{3},\left(x \in \mathbb{R}^{n}\right)$;
3. $g_{3}(x)=\sum_{i=1}^{n} \frac{2}{3}\left|x_{i}\right|^{3 / 2},\left(x \in \mathbb{R}^{n}\right)$;
4. $g_{4}(x)=\frac{1}{2} \sum_{i} x_{i}^{2}$ if $x_{i} \geq 0, i=1, \ldots, n$, and $+\infty$ else, defined for $x \in \mathbb{R}^{n}$ (and with domain dom $g_{4}=[0,+\infty)^{n}$).

Exercise III - rate for the proximal point algorithm

We consider M a maximal-monotone operator, defined in a Hilbert space \mathcal{X}. Given $x^{0} \in \mathcal{X}$, we let for $k \geq 0$:

$$
x^{k+1}=(I+M)^{-1} x^{k}
$$

that is, the iterations of the proximal-point algorithm.

1. Let x^{*} be a zero, that is, a point such that $M x^{*} \ni 0$ (we assume the set $M^{-1}(0)$ is not empty). Show that $x^{*}=(I+M)^{-1}\left(x^{*}\right)$ and that

$$
\left|x^{k+1}-x^{*}\right|^{2}+\left|x^{k}-x^{k+1}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}
$$

2. Show that $\left|x^{k+1}-x^{k}\right|$ is a decreasing function of $k \geq 0$.
3. Deduce that

$$
\left|x^{k+1}-x^{k}\right| \leq \frac{\left|x^{0}-x^{*}\right|}{\sqrt{k+1}}
$$

4. Let $x^{k_{l}}$ be a (weakly) converging subsequence, to some point \bar{x}. Show that for any $x^{\prime} \in \mathcal{X}$ and $y^{\prime} \in M x^{\prime}$,

$$
\left\langle x^{\prime}-\bar{x}, y^{\prime}\right\rangle \geq 0
$$

Deduce that $0 \in M \bar{x}$.
5. Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a 1-Lipschitz operator and, for $\theta \in(0,1)$, let $T_{\theta}=$ $(1-\theta) I+\theta T$. Let x^{*} be a fixed point of T (and therefore also of T_{θ} for any θ). We now consider the algorithm given by

$$
x^{k+1}=T_{\theta} x^{k}
$$

Use the parallelogram identity to show that:

$$
\left|x^{k+1}-x^{*}\right|^{2} \leq\left|x^{k}-x^{*}\right|^{2}-\theta(1-\theta)\left|T x^{k}-x^{k}\right|^{2}
$$

6. As before, deduce that:

$$
\left|T x^{k}-x^{k}\right| \leq \frac{\left|x^{0}-x^{*}\right|}{\sqrt{\theta(1-\theta)} \sqrt{k+1}}
$$

(Remark: in this framework, one can show [Baillon-Bruck 1996] that a similar estimate holds in any metric space, but it is much harder).
7. Application: show that the over-relaxed proximal point algorithm:

$$
\begin{aligned}
& x^{k+\frac{1}{2}}=(I+M)^{-1} x^{k} \\
& x^{k+1}=x^{k}+\lambda\left(x^{k+\frac{1}{2}}-x^{k}\right)
\end{aligned}
$$

for $1<\lambda<2$ is a converging method.

Exercise IV - Yosida approximation

Let A be a maximal monotone operator in a Hilbert space, and defined the Yosida approximation, for $\lambda>0$, as

$$
A_{\lambda} x=\frac{x-J_{\lambda A} x}{\lambda}
$$

where $J_{\lambda A}=(I+\lambda A)^{-1}$ is the resolvent.

1. Show that A_{λ} is a monotone operator.
2. Show that $A_{\lambda} x=J_{A^{-1} / \lambda}(x / \lambda)$. Deduce that it is $(1 / \lambda)$-Lipschitz. Bonus: show that it is λ-co-coercive.
3. Let $x \in \operatorname{dom} A$ (that is, $A x \neq \emptyset$). Show that

$$
\lim _{\lambda \rightarrow 0} A_{\lambda} x=A_{0} x:=\arg \min _{p \in A x}|p| .
$$

Hint: first, show that if $p_{\lambda}=A_{\lambda} x$ then $p_{\lambda} \in A\left(x-\lambda p_{\lambda}\right)$. Using the monotonicity of A, deduce that for any $p \in A x,\left|p_{\lambda}\right|^{2} \leq\left\langle p_{\lambda}, p\right\rangle$, hence that $\left|p_{\lambda}\right| \leq|p|$. Conclude by using that A is maximal.
4. Contraction semigroup: since A_{λ} is Lipschitz, by the Cauchy-Lipschitz theorem, one can solve for all $x \in \mathcal{X}$:

$$
\left\{\begin{array}{l}
\dot{X}^{\lambda}(t, x)=-A_{\lambda} X^{\lambda}(t, x) \quad t>0, \\
X^{\lambda}(0, x)=x
\end{array}\right.
$$

and the solution, which is at least C^{1} in time, satisfies:

$$
X^{\lambda}(t, x)=x-\int_{0}^{t} A_{\lambda} X^{\lambda}(s, x) d s=X^{\lambda}\left(t^{\prime}, x\right)-\int_{0}^{t-t^{\prime}} A_{\lambda} X^{\lambda}\left(s, X^{\lambda}\left(t^{\prime}, x\right)\right) d s
$$

for any $t^{\prime}<t$. In particular, $X^{\lambda}(t, x)=X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}, x\right)\right)$.
Show that for any $x, y \in \mathcal{X}, t \mapsto\left|X^{\lambda}(t, x)-X^{\lambda}(t, y)\right|^{2}$ is non-increasing. Deduce that $\left|X^{\lambda}(t, x)-X^{\lambda}(t, y)\right| \leq|x-y|$ for all $t \geq 0$.
5. Show that $t \mapsto\left|A_{\lambda} X^{\lambda}(t, x)\right|$ is nonincreasing. If $x \in \operatorname{dom} A$, show that $\left|A_{\lambda} X(t, x)\right| \leq\left|A_{0} x\right|$ for all $\lambda>0$ and $t \geq 0$.
Hint: use that

$$
X^{\lambda}(t+h, x)-X^{\lambda}(t, x)=X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}+h, x\right)\right)-X^{\lambda}\left(t-t^{\prime}, X^{\lambda}\left(t^{\prime}, x\right)\right)
$$

for any $h>0, t, t^{\prime}<t$, and the previous question.
6. Using question 2., show that for $\lambda, \mu>0$ and for any $x \in \mathcal{X}, A_{\lambda} x=$ $A_{\mu}\left(x+(\mu-\lambda) A_{\lambda} x\right)$. Deduce that:

$$
\frac{\partial}{\partial t}\left|X^{\lambda}(t, x)-X^{\mu}(t, x)\right|^{2} \leq(\mu-\lambda)\left(\left|A_{\lambda} X^{\lambda}(t, x)\right|^{2}-\left|A_{\mu} X^{\mu}(t, x)\right|^{2}\right)
$$

(or any similar estimate) and in particular that if $x \in \operatorname{dom} A, \mid X^{\lambda}(t, x)-$ $X^{\mu}(t, x)|\leq C| A_{0} x \mid \sqrt{|\mu-\lambda| t}$ for some constant $C>0$.

What can you conclude? (Without justifying everything, unless there is still time.)

