Continuous optimization, an introduction

Exercises (22th Nov. 2016)

1. We recall that for a convex function $f: X \to \mathbb{R}$,

$$\operatorname{prox}_{\tau f}(x) = \arg\min_{y} f(y) + \frac{1}{2\tau} \|y - x\|^2.$$

Evaluate $\operatorname{prox}_{\tau f}(x)$ for $\tau > 0$, and

- $x \in \mathbb{R}^N$, $f(x) = \frac{1}{2} ||x x^0||^2$: what does Moreau's identity give in this case, for $x^0 = 0$?;
- $x \in \mathbb{R}^N, f(x) = \delta_{\{\|x\| \le 1\}}^1;$
- $x \in \mathbb{R}^N$, $f(x) = \langle p, x \rangle \sum_i g_i \log x_i \ (g_i > 0)$ if $x_i > 0$ for all $i = 1, \dots, n$ and $f(x) = +\infty$ else;
- $x \in \mathbb{R}^N$, $f(x) = \delta_{\{|x_i| \le 1: i=1,...,N\}}(x) + \varepsilon ||x||^2/2$.
- 2. Evaluate the convex conjugate of:
 - $f(x) = \delta_{\{|x_i| \le 1: i=1,...,N\}}(x) + \varepsilon ||x||^2/2, x \in \mathbb{R}^N;$
 - $f(x) = \sum_{i=1}^{N} x_i \log x_i, x \in \mathbb{R}^N$, where $x \mapsto x \log x$ is $+\infty$ for x < 0 and extended by continuity (that is, with the value 0) in x = 0;
 - $f(x) = \sqrt{1 + \|x\|_2^2}, x \in \mathbb{R}^N$.

In each case of the three cases above, describe ∂f and ∂f^* .

3. Show that if ||x|| is a norm and $||y||^{\circ} = \sup_{||x|| \le 1} \langle x, y \rangle$ is the *polar* or *dual* norm, then

$$\|\cdot\|^{*}(y) = \delta_{B_{\|\cdot\|^{\circ}}(0,1)}(y) = \begin{cases} 0 & \text{if } \|y\|^{\circ} \le 1\\ +\infty & \text{else.} \end{cases}$$

Hint: write $\sup_x \langle x, y \rangle - \|x\|$ as $\sup_{t>0} \left(\sup_{\|x\| \le t} \langle x, y \rangle \right) - t$. What is $\|\cdot\|^{\circ\circ}$?

4. (Schatten norms) Let $X \in \mathbb{R}^{n \times p}$ be a matrix.

a. Show that $X^T X$ and XX^T are a symmetric $p \times p$ and $n \times n$ (respectively) matrix and that they have the same nonzero eigenvalues $(\lambda_1, \ldots, \lambda_k)$ $(k \leq \min\{p, n\})$. The values $\mu_i = \sqrt{\lambda_i}$ are the "singular values" of X.

b. Show that if (e_1, \ldots, e_p) is an orthonormal basis of eigenvectors of $X^T X$ (associated to the eigenvalues λ_i , or 0 if i > k), then $(Xe_i)_i$ are orthogonal. Show that one can write, for $\mu_i > 0$, $Xe_i = \mu_i f_i$ where f_i are also orthonormal. Completing f_i into an orthonormal basis of \mathbb{R}^n , deduce that

$$X = \sum_{i=1}^{k} \mu_i f_i \otimes e_i = VD^t U$$

 $^{{}^{1}\}delta_{C}(x) = 0$ if $x \in C, +\infty$ if $x \notin C$

where U is the column vectors $(e_i)_{i=1}^p$, V the column vectors $(f_i)_{i=1}^n$, D is the $n \times p$ matrix with $D_{ii} = \mu_i$, i = 1, ..., k, $D_{ij} = 0$ for all other entries (just evaluate $Xx = X(\sum_{i=1}^p \langle x, e_i \rangle e_i)$, etc.) What type of matrices are the matrices U, V? This is called the "singular value decomposition" (SVD) of X (one usually orders the μ_i by nonincreasing values).

c. One defines the *p*-Schatten norm of $X, p \in [1, \infty]$, as $||X||_p^p = \sum_{i=1}^k \mu_i^p$, $||X||_{\infty} = \max_i \mu_i$. Show that

$$||X||_2^2 = \sum_{i,j} x_{i,j}^2 = \operatorname{Tr}({}^t X X); \quad ||X||_{\infty} = \sup_{||x|| \le 1} ||Xx||.$$

(where in the latter ||x|| is the 2-norm). $||\cdot||_{\infty}$ is called the *spectral* norm or *operator* norm.

d. [Exercice 3. is necessary for this question.] Why do we have that

$$\{X: \|X\|_1 \le 1\} = \operatorname{conv}\{f \otimes e : f \in \mathbb{R}^n, e \in \mathbb{R}^p, \|f\| \le 1, \|e\| \le 1\} ?$$

Deduce that

$$\|X\|_{\infty} = \sup_{\{\|Y\|_1 \leq 1\}} \left< Y, X \right>$$

where we use the Frobenius (or Hilbert-Schmidt) scalar product $\langle Y, X \rangle = \sum_{i,j} Y_{i,j} X_{i,j} = \text{Tr}(^{t}YX)$. Deduce that

$$\|X\|_1 = \sup_{\{\|Y\|_{\infty} \le 1\}} \langle Y, X \rangle$$

(One can also show that $\|\cdot\|_p^\circ = \|\cdot\|_{p'}, 1/p + 1/p' = 1.$)

e. We want to compute

$$\bar{Y} = \arg\min_{\|X\|_{\infty} \le 1} \|X - Y\|_2^2 = \operatorname{prox}_{\delta_{\{\|X\|_{\infty} \le 1\}}}(Y).$$
 (P_{\infty})

Show first that it is equivalent to estimate $\min_{\|X\|_{\infty} \leq 1} \|X - D\|_2^2$ where $Y = VD^t U$ is the SVD decomposition of Y. Show that the matrix X which optimizes this last problem is diagonal, and satisfies $X_{i,i} = \max\{D_{i,i}, 1\}$. Deduce the solution \overline{Y} of (P_{∞}) . Deduce the proximity operator $\operatorname{prox}_{\tau \|\cdot\|_1}$.

f. A company rents movies and has a file of clients $X_{i,j} \in \{-1, 0, 1\}$ which states for each client $i = 1, \ldots, p$ whether he/she has already rented the film $j = 1, \ldots, n$ (otherwise $X_{i,j} = 0$) and has liked it $(X_{i,j} = 1)$, or not $(X_{i,j} = -1)$. It wants to determine a matrix of "tastes" for all the clients $Y \in \{-1, 1\}^{p \times n}$. Assuming that the clients can be grouped into few categories, this matrix should have low rank. One could look therefore for an approximation of Y by minimising

$$\min_{Y} \|Y\|_{1} + \frac{\lambda}{2} \sum_{i,j:X_{i,j} \neq 0} (X_{i,j} - Y_{i,j})^{2} + \frac{\varepsilon}{2} \sum_{i,j:X_{i,j} = 0} Y_{i,j}^{2}$$

where $\lambda >> \varepsilon > 0$ are parameters.

Design an iterative algorithm to solve this problem.