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Consider f convex, proper (the definition also is valid for a non-convex function but
conflicts with more reasonable, local definitions).

Definition: subgradient
The subgradient of f at x € dom f is the set:

f(x) ={pe & : f(y) =2 f(x) +(p,y —x) Vy € X}.

This is clearly a closed, convex set.
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Let f : X — (—o0,+0o0] be convex, proper. Then x € X is a minimizer of f if and
only if 0 € Of(x).

Proof: actually this is the definition of the subgradient.



Subgradient
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A. Chambolle that for any hy
o FOx A th) = £(x)

t—0 t

= (Vf(x), h)
then Of = {Vf(x)}.
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Subgradient

If f (convex) is Gateaux-differentiable at x, that is if there exists Vf(x) € X" such
that for any h,
im f(x + th) — f(x)

t—0 t

= (VF(x), h)
then Of = {Vf(x)}.

e Indeed since f is convex then, for any h, ¢ : t — f(x + th) is convex and using
#(1) > ¢(0) + ¢'(0), that is:
f(x+ h) > f(x)+ (VF(x), hy,

which shows that V£ (x) € 0f(x).

e On the other hand, for p € 9f(x), t > 0 small, then f(x + th) — f(x) > t (p, h).
Dividing by t and letting t — 0 we deduce (Vf(x) — p, h) > 0. Since this is true
for any h, p = Vf(x).
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Subgradient

If f (convex) is Gateaux-differentiable at x, that is if there exists Vf(x) € X" such
that for any h,
im f(x + th) — f(x)

t—0 t

= (VF(x), h)
then Of = {Vf(x)}.

e Indeed since f is convex then, for any h, ¢ : t — f(x + th) is convex and using
#(1) > ¢(0) + ¢'(0), that is:
f(x+ h) > f(x)+ (VF(x), hy,

which shows that V£ (x) € 0f(x).

e On the other hand, for p € 9f(x), t > 0 small, then f(x + th) — f(x) > t (p, h).
Dividing by t and letting t — 0 we deduce (Vf(x) — p, h) > 0. Since this is true
for any h, p = Vf(x).
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Existence of subgradients
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f(x +sv) = f((s/t)(x + tv) + (1 — s/t)x) < Sf(x + tv) + (1 — $)f(x)

o so that
f(x +sv) — f(x) - f(x +tv) — f(x)

5 t

It follows that

f —f f —f
f'(x;v) == lim (x + tv) () = inf (x +tv) ()
tl0+ t t>0 t

is well defined (in [—o00, o0]), and < +oo as soon as {x + tv : t > 0} Ndom £ # ().
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f(x +sv) = f((s/t)(x + tv) + (1 — s/t)x) < Sf(x + tv) + (1 — $)f(x)

o so that
f(x +sv) — f(x) - f(x +tv) — f(x)

5 t

It follows that

f —f f —f
f'(x;v) == lim (x + tv) () = inf (x +tv) ()
tl0+ t t>0 t

is well defined (in [—o00, o0]), and < +oo as soon as {x + tv : t > 0} Ndom £ # ().

°

—~
Hence: if x € dom f, then f/(x; v) < oo for all v. In addition
f'(x;0) =0 < f'(x; v) + f'(x; —v) hence f'(x;v) > —oc.
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One has: f’(x;-) is a limit of convex functions, and hence convex, moreover, it is
clearly positively 1-homogeneous: f'(x; Av) = Af’(x; v) for all A > 0 and all v.
Letting C = {p: (p,v) < f'(x; v) Vv} we know that the convex,
lower-semicontinous envelope of v — f/(x; v) is the support function of C (which
could be empty).
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One has: f’(x;-) is a limit of convex functions, and hence convex, moreover, it is
clearly positively 1-homogeneous: f'(x; Av) = Af’(x; v) for all A > 0 and all v.

Letting C = {p: (p,v) < f'(x; v) Vv} we know that the convex,
lower-semicontinous envelope of v — f/(x; v) is the support function of C (which
could be empty).

For pe C, f(x+v)—f(x) > f'(x;v) > (p,v) for all v, hence p € Of(x). The
converse is also clear.

In finite dimension this argument is enough to deduce that the subgradient 0f(x) is
not empty for any x in the interior of the domain (actually in ridom f, also).
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Let us assume in addition f is lower semicontinuous. Then we have seen that f is
bounded in the interior of its domain and therefore locally Lipschitz. Hence for v in
the unit ball and t small enough, (f(x + tv) — f(x))/t is also Lipschitz therefore
also v — f’(x; v) is.
Since

f'(x; v) = sup (p, v)
peC

it shows that C = Of(x) is not empty, and bounded.

We will show later on that in general, for a convex Isc function, dom Jf is dense in
dom f (even when this set has empty interior).
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B Additionally, for x in the interior of dom f, in case 9f(x) = {p}, then
f'(x; v) = (p, v) for any v, that is: f is Gateaux differentiable in x.

°

e
Let f be convex Isc and x € domf. Then f is (Gateaux) differentiable at x if and
only if Of has exactly one element.

Remark: One could assume x € ridom f in the finite-dimensional case yet this
would not really be relevant: since a convex function which has a domain with
empty interior cannot be Gateaux differentiable anyway — only the restriction to
its domain could be.
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Legendre-Fenchel Identity

If x realizes the sup in f*(y) = sup, (y, x) — f(x) then for all z,
y,x) =f(x) 2 y,2) = f(2) & f(z) 2 f(x) +{y,z=x)

which means that y € 0f(x).

Conversely if y € 9f(x), f(x) — (y,x) > f(x") — (y,x") for all x' hence

*(y) < {y,x) — f(x), and then f**(x) = f(x), y € 9f**(x), and f is Isc at x. In
particular we see that Of**(x) D Of(x) for all x. Precisely we have:

=

Legendre-Fenchel identity

y € 0f(x) < (x,y) =f(x)+ *(y) = x € 9f*(y),

the latter being also an equivalence if f is Isc, convex (if f = f**).
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Assume x € X is a minimizer of f + g, where f is convex and g is C*. Then for all
yeX,

fly) = f(x) = (Ve(x),y = x)
that is, —Vg(x) € 0f(x) & 0f(x) + Vg(x) 2 0.

Proof: For t > 0 small enough,

f(x) +8(x) < flx+tly —x)) +8(x + ty — x)) < £(x) + t(f(y) — f(x)) + g(x + t(y — X))

so that
g(x) —gx +t(y —x))
t

<fly) = f(x)

and we recover the claim in the limit t — 0.
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o Let f be convex, Isc: then dom Of is dense in dom f.

Proof: Let X € dom f, 7 > 0 and let x, be the minimizer of |x — %|2/(27) + f(x).
Then by the previous result,

X — Xr

€ 0f(x;)

T

so that x, € dom Of. In addition, |x, — x|> < 27f(X) — 0 as 7 — 0 since
f(x) < +o0. O
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Let f be strongly convex with parameter jx > 0. Then for any x € dom Of,
y € domf and p € 0f(x),

F(y) 2 £(x) + {p,y = x) + Slx = yP

Proof: We use that f'(y) = f(y) — (p,y — x) — uly — x|?/2 is also convex. We have, since p € 9f(x):
/ K 2 / —
F)+ Sy =xI" 2 F1(x) = f(x)

for all y, hence by the previous lemma, 0 = —pu(y — x)|y=x € 0f’(x) and therefore f’ is also minimal at x.

That is, f'(y) > f'(x) = f(x) for all y, which is precisely the claim. O
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Subdifferential calculus

The subgradient of a sum

Let f, g be convex, proper.
@ For all x, Of(x) + dg(x) C I(f + g)(x).
o If there exists x € dom f where g is continuous, then

Of(x) + 0g(x) = O(f + g)(x). (In finite dimension, a relevant, weaker
condition is ridom g Nridom f # ().)

Proof: the inclusion is obvious from the definition. For the reverse inclusion, we assume p € 9(f + g)(x)
and want to show that it can be decomposed as g + r with g € 9f(x) and r € dg(x).

By definition, we have that (y) + g(y) > f(x) + g(x) + (p,y — x).
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= Thanks to the assumption that g is continuous at X, epi(g(-) — (p,-)) contains a ball B centered at

(x,g(x) — (p,X) + 1) and has non empty interior. Denote E this interior, and F the following
translation/flip of epi f:

: z F={ly,t): =t = f(y) = [f(x) + &(x) — (p, )]},
which is convex.

For (y,t) € F, one has —t > f(y) — [f(x) + &(x) — (p, )] = —[g(y) — (p,¥)], that is t < [g(y) — (p, )]
so that (y,t) ¢ E.

Hence by the separation theorem there exists (g, A) # (0, 0), such that for all (y,t) € E, (y',t') € F,
(@y) + At > (q,y") + At

As t’ can be sent to —oo (or t to +00), A > 0. Moreover since X is in dom f, if A = 0 one finds that

(q,y —x) <0 for all y € dom g which contains a ball centered in X, so that g = 0, which is a contradiction.
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A Chambol In particular choosing t’ = f(x) + g(x) — (p, x) — f(¥'),
F ~hambolie
(@y)+t>(q,y )+ F(x)+&(x) = (p,x) = f(y').
Subg nt:

for all (y,t) € E. The closure of E contains epi(g(-) — (p,-)): indeed any (y, t) € epi(g(-) — (p,)) is on
the boundary of the set {ty + (1 —t)B:0 < t < 1} C epi(g(-) — (p,-)).
Hence it follows that for all y,y’,

(@) +8(y) = (p,y) > (a.y) + f(x) + g(x) = (p,x) — f(y')
S F(Y)+8ly) 2 F(x) +8(x) + (p,y =) + (@Y — )
=f(x)+e(x)+p—ay—x)+{(ay —x)

showing that g € 9f(x) and r = p — g € dg(x), as requested. O

Remark: For f, g convex, proper, Isc. the result is also deduced from the theorem
on inf-convolutions...
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Let A: X — Y be a continuous operator between two Hilbert spaces and f a
proper, convex function on Y. Let g = f(Ax), then if there is X such that f is
continuous at Ax, 0g(x) = A*0f(Ax). In finite dimension, one can just require
that Ax € ridomf.

Proof is similar (again, one inclusion is easy).



Continuous
(convex)
optimisation

A. Chambolle

Application: Karush-Kuhn-Tucker's theorem

Let f,gj, i=1,...,m be C!, convex and assume
ax, (gi(x)<0Vi=1,...,m) (Slater’s condition)
Then x* is a solution of

i f
gi(X)ngl!21w~7m (x)

if and only if there exists (\j)™.;, Ai > 0 such that

VE(x*)+ > AiVagi(x*) =0,
i=1

m
Z Aigi(x*) =0 (complementary slackness condition)
i=1
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KKT's Theorem

Proof: Observe that since gi(x*) < 0 and \; > 0 the complementary condition is also equivalent to:
Vi, gi(x*) =0or \; =0.

If the last statements are true, then x* is is a minimizer of the convex function f + Zi Aigi. Then
obviously for any x with gj(x) < 0 for all i,

F(x) > F(x +Z)\,g,(x>f +Z/\,g,(><)—f( ")

Conversely, consider for all i the function

5:() = {0 if gi(x) <0,

+oo else.,

then the problem is equivalent to miny f(x) + Z,’ 0i(x). By Slater's condition, we know that there exists X
where all functions f,§; are continuous. Hence by the previous theorems:

0€af + Zs;)(x*) — VF(x*) + Zaa,-(x )
i i=1
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If gi(x*) < O then it is negative in a neighborhood of x* and 94;(x*) = {0}.

If gi(x*) = 0, then we need to characterize the vectors p such that for all y with gi(y) <0,
S of
< ions. 0 2 <p’y _ X*> )

Let v L Vgi(x*), and consider y = x* — t(Vgi(x*) + v): then
gi(y) = —t(Vai(x"), Vgi(x*) + v) + o(t) = —t|Vei(x™)]* + o(t) < 0

if t > 0 is small enough, hence
0 <{p,Vgi(x™) +v).

We easily deduce that we must have p = \;Vgj(x*), for some \; > 0 (in other words,
90i(x*) = Ry Vgi(x*)). The theorem follows. O
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Remark: in case g; is affine it is enough to assume gj(X) = 0, this allows in
particular to treat also the case of affine equality constraints

(g(x) =0« (g(x) <0and —g(x) <0)).
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Els

Monotone operators in Hilbert spaces

A fundamental property of subgradients is the monotonicity: Using that for all
p € Of(x), p' € Of (X):

f(x') > f(x)+ (p,x —x), Ff(x)>F(x")+(p',x—x),
and summing both inequalities, we find
0> (p—p,x" —x).

In 1D, this is equivalent to saying that Of is non-decreasing (if x’ > x, p’ must be
> p). In general one says that Of is a “monotone operator”:

Definition

The operator A : X — P(X) is monotone if and only if Vx,x’ € X, Vp € Ax and
p’ € Ax', one has
(p'—p,x'—x)>0.
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Monotone operators in Hilbert spaces

More definitions

Definition

The operator A : X — P(X) is (u-)strongly monotone if and only if Vx, x € X,
Vp € Ax and p’ € Ax/, one has

(p—p,x —x) > plx — X%
It is (u-)co-coercive if

(p—p,x—x)=pp-p
It is maximal if the graph {(x,p) : p € Ax} C X x X is maximal with respect to
inclusion, among all the graphs of monotone operators.

In dimension 1: graphs of nondecreasing functions / (sub)gradients of convex functions.
In higher dimension, not true anymore (example: an antisymmetric linear mapping in RY,
d>?2).

The subgradient of a convex function f is monotone, strongly monotone if f is strongly
convex, co-coercive if Vf is Lipschitz (“Baillon-Haddad").
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Monotone operators in Hilbert spaces

Let f be convex. Then Of is a maximal-monotone operator if and only it is the
subgradient of a lower-semicontinuous function.

Proof: (cf Rockafellar): if f is Isc, to show that Of is maximal we must show that if x € X and p ¢ 9f(x)
then one can find y and g € 8f(y) with (p — q,x —y) < 0.
Replacing f with f(x) — (p, x) we can assume that p =0, that is, 0 € Of(x).

Consider now the minimizer of f(y) + |y — x|?/2 which exists as this function is strongly convex and lIsc.
It characterized by 9f(y) 4+ (y — x) 2 0 that is, g = x — y € Of(y). Then, necessarily g # 0 otherwise this
means 0 € 9f(x). Then,

(p—ax—y)=(—gx—y)=—|x—y]*=—|q)* <O0.

This shows that Of is maximal.
Conversely if Of is maximal, since 9f** D Of, then this operator is also the subgradient of the convex,
Isc function **. We are not proving here that f = f**, only that Of is also the subgradient of the convex,

Isc function £**. f and f** could differ at some point where 9f(x) = 0.
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Definition

Given A a monotone operator, with graph {(x, p) : p € Ax}, its inverse is

A7l p {x: Ax > p}, with graph {(p,x) : p € Ax}.

Therefore, it is maximal if and only if A is maximal, co-coercive if and only if A is
strongly monotone.

Els

Remark: For f convex Isc.*, (9f)~! = Of* (by Legendre-Fenchel's identity).
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°

s —A—
- Let A, B be maximal monotone operators. if dom AN dom B # (), then A+ B
(which is always monotone) is maximal monotone.

(Cor 2.7 in H. Brézis: Opérateurs maximaux-monotones et semi-groupes de
contraction dans les espaces de Hilbert).
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Theorem (Minty 62)
The resolvent of a maximal-monotone operator A, defined by

x—y=(+A"x= Jax & y+ Ay > x

is a well (everywhere) defined single-valued nonexpansive mapping. (Conversely, for
a monotone operator A if (/ 4+ A) is surjective then A is maximal.) |
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Minty's theorem

Proof: We introduce the graph G = {(y + x,y — x) : x € X,y € Ax}. If (a,b), (a’,b’) € G, with
a=y+x,b=y—xanda =y +x',b=y" —x’, then

b—bP=ly—yP-2(y—y . x=x)+Ix=xXP=la-adP—4{y—y ,x—x)<|]a=a

that is G is the graph of a 1-Lipschitz function. [Conversely, G 1-Lipschitz implies A monotone.]
Moreover, if G’ D G is also the graph of a 1-Lipschitz function, then defining

A" ={((a—b)/2,(a+ b)/2) : (a,b) € G’} the same computation shows that A’ D A is the graph of a
monotone operator, hence if A is maximal: A’ = A and G’ = G.

In particular, if G is defined for all a then clearly G and therefore A are maximal (Remark: being
1-Lipschitz, G is necessarily single-valued).

So the theorem is equivalent to the question whether a 1-Lipschitz function which is not defined in the
whole of X’ can be extended.

This result (which is true only in Hilbert spaces) is known as Kirszbraun-Valentine's theorem (1935), we

give a quick proof derived from Federer (Geometric measure theory, 2.10.43).
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If (xi))"_1, (vi)"_, are points in Hilbert spaces respectively X', such that
Elemens o Vi,j, lyi — yj| <|xi — x|, then for any x € X there exists y € YV with
monotone operators .
oy lvi—y| <|xi—x| foralli=1,... n.
Proof: It is enough to prove this for x = 0: we need to find a common point to B(y;, |x;|). There is
nothing to prove if x = x; for some i, so we assume x; #0, i =1,...,n.
We define

n
¢ = min czo:ﬂé(y;,c\Xfl)#(?) >0
i=1

(if the y; are distinct, which we may also assume). This is a min because the closed balls are weakly
compact, and we can consider y such that |y — yi| < ¢|xi|, i=1,...,n.

We must show that ¢ < 1.
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Kirszbraun-Valentine's theorem

Then: y must be a convex combination of the points (y;);c such that |y — yi| = €|xi|.
Indeed, if not, let y’ be the projection of y onto 6 {y;:i € I}. Asforany i€ l, (yi—y',y —y’) <0 one
has, letting yr = (1 — t)y + ty’, that for any i € I

li—vilP=lyi—y+tly =y )W =lyi—yP+2t(yi—y,y—y) +ly -y
=lyi—yP+2t{yi—y,y—y)—2tly—y' P+ £y -y
Slyi—yP—t@=0ly =y <lyi -y
if t € (0,2).
Hence if t > 0 is small enough, one sees that |y; — y:| < |y; — y| = €|x;| for i € I, while since for i & |,

lyi — y| < €|xi|, one can still guarantee the same strict inequality for y; if t is small enough. But this

contradicts the definition of ¢, since then there would exists ¢ < € such that y; € ﬂ;':l B(yi, c|xi]).



Kirszbraun-Valentine's theorem
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optimisation 2 <a’ b> _ |a|2 T |b|2 B |a — b|2,
A. Chambolle
Wﬂ}:%w*yf=§:%®m7%w*y>
iel ijel

ts o 1
T i =53 00 (Ivi =y + by =y = lvi = %)
theory 2

ijel

1 _ _
> 200 (Sl + gl — Ix — )
i,jel

_ 1-¢22
= C2 Z 9,‘01' (X,',Xj> - > IX,' — Xj 2
ijel

which shows that
(1-2?) Ze,—ej\x,- — X2 > 2&2|Z 0ixi|?

ijel i€l

so that ¢ < 1. Hence, y satisfies |y — yj| < |xi|, as requested, which shows the Lemma.
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Minty's theorem

We finish the proof of Minty'sTheorem: if there exists x € X such that {x} x X N G = 0, consider the set
K= ﬂ B(b, |x — a|)
(a,p)eG

which is an intersection of weakly compact sets.
We show that because the compact sets defining K have the “finite intersection property”, K can not be
empty: Choosing (ao, bo) € G, if By = B(bo, |x — ag|), we see that

K=Bon ﬂ B(b, |x — a|)
(a,p)eG
hence Bo_\Kz BOmU(a,b)EG B(b,|x — a|)c. i
If this is By, by compactness one can extract a finite covering U7:1 B(bi, |x — aj|)€ for (aj, bj) € G,
i=1,...,n. We find that
n
Bon U B(bj, |x — ai|)* = Bo
i=1
or equivalently that
n
Byn ﬂ B(b,‘7 |x —ai])=0
i=1
which contradicts The Lemma.
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1-Lipschitz function and is strictly larger than G, which contradicts the maximality of A.

The non-expansiveness of (I + A)~1 follows from, if y + Ay 3 x, y' + Ay’ 3 x/, p=x — y € Ay,
E pl=x"—y' € Ay"

monotone operators
theory

x=xXP=ly—yP+2{p—py—y)+lp-pP=ly—y+Ip-rP
that is, for T = (/1 + A)~L:
| Tx — TX/|2 +|(I—T)x—(I— T)X/|2 <|x— X'|2.

An operator which satisfies this is said firmly non-expansive.




Reflexion operator

Continuous

(convex) Given A maximal monotone, we define the Reflexion of A:

optimisation

A. Chambolle RA — 2JA — I e 2(/ —|— A)_l — I

Ra is nonexpansive, and in particular, Ja = 1/2 4+ Ra/2 is (1/2)-averaged.

In fact one has even:

Proposition
For an operator T : X — X, the following are equivalent:
@ T is the resolvent of a maximal-monotone operator.

@ T is firmly non-expansive;
© T is 1/2-averaged, that is, R =2T — | is non-expansive;




Reflexion operator

oy Proof of the lemma: We prove (2) < (3) in the theorem. It follows in an obvious way from

(convex)
optimisation the parallelogram identity: for any x, x/,
A. Chambolle
[Rx = RXP = |(Tx = x) = (TX = x') + Tx — T2
=20/ = T)x = (1 = TP +2|Tx = T = Ix = x> < |x = x'?

s S (=T = (1= TY)P + [ Tx = T < [x— X'

Remark: more generally, the parallelogram identity /strong convexity of | - |?/2 shows that:
Ty is O-averaged for some 0 < 6§ <1 (thatis Top = (1—0)/+6T, T 1-Lipschitz) if and

only if for all x, x’:
1-46
| Tox — ToxX'|* + TKI —To)x — (I = To)X'|? < |x — x'?

To finish the proof of the theorem, we have to prove that if an operator T = [/2 4+ R/2 is
(1/2)-averaged (R is non-expansive), then there exists a maximal monotone operator A

such that T = J,.



Continuous
(convex)
optimisation

A. Chambolle

Reflexion operator

The proof follows by the same (or reverse) construction as in the beginning of the proof of
Minty's theorem: we consider the graph

G={((x+y)/2,(x—y)/2):xe X,y =Rx} = {(Tx,(I — T)x) : x € X}

and denote by A the corresponding operator (y € Ax < (x,y) € G). Then A is monotone:
if (¢,1),(&',n") € G, then for some x,x" € X, { = (x + Rx)/2, n = (x — Rx)/2, etc., and
we find:

1
E—¢&n—n)= Z<><—|—R)<—X'—RX’,X— Rx — x" + Rx")
1

=2 (x = x> = |[Rx — RX'|?) > 0.
Moreover, A is maximal, if not, one could build as before from A’ © A a non-expansive
graph {(§ +n,§ —n) : n € A&} strictly larger than the graph {(x, Rx) : x € X'}, which is
of course impossible. By construction, ATx > (I — T)x for all x, hence
(I+A)Tx>x & Tx=(I+A) 1x.



A practical consequence: proximal point algorithm

ol If X € X and xKT1 = (I + A)"1xk, k >0, and there exists X with

optjm,isjafi,on, AX 30 < (14 A)71x = X, then x¥ — x where Ax > 0 (KM's theorem).
o Chambolc particular if A= 70g for g convex, Isc and 7 > 0,

k’2

1
X = (1+A) (k) 0 X € g (x ) e X = arg min g (x)+5x—x
-

Els

we see that the implicit gradient descent converges, as the iterations of a
1/2-averaged operator.

Definition
The resolvent of the subgradient dg of a convex, Isc function is called the
“proximity operator” (or “proximal”) of g:

~|x" — x|?.

proxg(x) = (1+ 0g) "1 (x) = arg min g(x) + 5




Moreau's identity

Continuous
(convex)
optimisation

Let A be a maximal-monotone operator. Then for any x € X,

A. Chambolle

x=(+A)x)+(+A ) x

Els

Proof: one has y = (I + A)"Ix & y + Ay D x & y € A~ (x — y), letting then z = x — y, this is
x€z+ Az 2= (r+ Afl)*lx.
This is often written, for 7 > 0:

x=(1+7A) () + 71+ TAT) (),
or for A = 0g, g convex lsc,

x=(I+710g)  (x) + (I + Log*) (%) = Prox,g(x) + 7proxg« /- (%).



Remark: Yosida regularization and gradient flows

Continuous

(convex)
P Given A a maximal monotone operator, the maximal monotone operator
A, =[x — (I +7A)"1x]/7 is called a Yosida approximation of A: it is a
(1/7)-Lipschitz-continuous mapping, with full domain. In case A = 9f, A, = Vf;
where

1
) _ . / ]2
fT(x)—ng(l/n f(x)+f27_|x x|°.

A. Chambolle

The operator TA; is firmly non-expansive, since | — TA; is. It is a key tool for
establishing the existence of solutions to:

x+Ax >0

(cf H. Brézis, Opérateurs maximaux-monotones et semi-groupes de contraction
dans les espaces de Hilbert).



Back to Fenchel-Rockafellar duality

Continuous
(convex)
optimisation

SRl Consider again:
in f(K
min f(Kx) +g(x)

with K : X — ) is continuous linear map and f, g convex, Isc. Then we have seen
g&l that a solution can be found as a saddle-point of

L(x,y) = {y, Kx) = F(y) + g(x),
that is (x*, y*) such that:
L(x%y) < L(XT,y7) < L(x,¥7) (S)

forall x e X, y € Y. Then:



Continuous
(convex)
optimisation

A. Chambolle

Els

Fenchel-Rockafellar duality: saddle point

By optimality in the saddle-point problem: Kx* — 9f*(y*) 3 0,
K*y* 4+ 0g(x*) 3 0, that is:

0g(x) 0 K*\ [x
o (o) (% 50

meaning the solution can be found by finding the “zero” of the sum of two
monotone operators. So a solution can be computed if we have an algorithm for
solving Ax 4+ Bx 3 0, A, B maximal monotone.

This can be solve by a class or methods called (operator) “splitting algorithms”.
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