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Generalized gradients: Subgradients of convex functions

Consider f convex, proper (the definition also is valid for a non-convex function but
conflicts with more reasonable, local definitions).

Definition: subgradient
The subgradient of f at x ∈ dom f is the set:

∂f (x) := {p ∈ X : f (y) ≥ f (x) + ⟨p, y − x⟩ ∀y ∈ X }.

This is clearly a closed, convex set.
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Subgradient: fundamental property

Theorem (?)
Let f : X → (−∞, +∞] be convex, proper. Then x ∈ X is a minimizer of f if and
only if 0 ∈ ∂f (x).

Proof: actually this is the definition of the subgradient.
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Subgradient

If f (convex) is Gateaux-differentiable at x , that is if there exists ∇f (x) ∈ X such
that for any h,

lim
t→0

f (x + th) − f (x)
t = ⟨∇f (x), h⟩

then ∂f = {∇f (x)}.

• Indeed since f is convex then, for any h, ϕ : t 7→ f (x + th) is convex and using
ϕ(1) ≥ ϕ(0) + ϕ′(0), that is:

f (x + h) ≥ f (x) + ⟨∇f (x), h⟩ ,

which shows that ∇f (x) ∈ ∂f (x).
• On the other hand, for p ∈ ∂f (x), t > 0 small, then f (x + th) − f (x) ≥ t ⟨p, h⟩.
Dividing by t and letting t → 0 we deduce ⟨∇f (x) − p, h⟩ ≥ 0. Since this is true
for any h, p = ∇f (x).
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Subgradient
Existence of subgradients

If f is convex, x ∈ dom f , v ∈ X , t > s > 0:

f (x + sv) = f ((s/t)(x + tv) + (1 − s/t)x) ≤ s
t f (x + tv) + (1 − s

t )f (x)

so that
f (x + sv) − f (x)

s ≤ f (x + tv) − f (x)
t .

It follows that

f ′(x ; v) := lim
t↓0+

f (x + tv) − f (x)
t = inf

t>0

f (x + tv) − f (x)
t

is well defined (in [−∞, ∞]), and < +∞ as soon as {x + tv : t > 0} ∩ dom f ̸= ∅.

Hence: if x ∈
˚︷ ︸︸ ︷

dom f , then f ′(x ; v) < ∞ for all v . In addition
f ′(x ; 0) = 0 ≤ f ′(x ; v) + f ′(x ; −v) hence f ′(x ; v) > −∞.
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Subgradient
Existence of subgradients

One has: f ′(x ; ·) is a limit of convex functions, and hence convex, moreover, it is
clearly positively 1-homogeneous: f ′(x ; λv) = λf ′(x ; v) for all λ ≥ 0 and all v .
Letting C = {p : ⟨p, v⟩ ≤ f ′(x ; v) ∀v} we know that the convex,
lower-semicontinous envelope of v 7→ f ′(x ; v) is the support function of C (which
could be empty).

For p ∈ C , f (x + v) − f (x) ≥ f ′(x ; v) ≥ ⟨p, v⟩ for all v , hence p ∈ ∂f (x). The
converse is also clear.

In finite dimension this argument is enough to deduce that the subgradient ∂f (x) is
not empty for any x in the interior of the domain (actually in ri dom f , also).
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Existence of subgradients

In infinite dimension it is a bit more complicated.
Let us assume in addition f is lower semicontinuous. Then we have seen that f is
bounded in the interior of its domain and therefore locally Lipschitz. Hence for v in
the unit ball and t small enough, (f (x + tv) − f (x))/t is also Lipschitz therefore
also v 7→ f ′(x ; v) is.
Since

f ′(x ; v) = sup
p∈C

⟨p, v⟩

it shows that C = ∂f (x) is not empty, and bounded.

We will show later on that in general, for a convex lsc function, dom ∂f is dense in
dom f (even when this set has empty interior).
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Subgradient

Additionally, for x in the interior of dom f , in case ∂f (x) = {p}, then
f ′(x ; v) = ⟨p, v⟩ for any v , that is: f is Gateaux differentiable in x .

Lemma

Let f be convex lsc and x ∈
˚︷ ︸︸ ︷

dom f . Then f is (Gateaux) differentiable at x if and
only if ∂f has exactly one element.

Remark: One could assume x ∈ ri dom f in the finite-dimensional case yet this
would not really be relevant: since a convex function which has a domain with
empty interior cannot be Gateaux differentiable anyway — only the restriction to
its domain could be.
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Legendre-Fenchel Identity

If x realizes the sup in f ∗(y) = supx ⟨y , x⟩ − f (x) then for all z ,

⟨y , x⟩ − f (x) ≥ ⟨y , z⟩ − f (z) ⇔ f (z) ≥ f (x) + ⟨y , z − x⟩

which means that y ∈ ∂f (x).
Conversely if y ∈ ∂f (x), f (x) − ⟨y , x⟩ ≥ f (x ′) − ⟨y , x ′⟩ for all x ′ hence
f ∗(y) ≤ ⟨y , x⟩ − f (x), and then f ∗∗(x) = f (x), y ∈ ∂f ∗∗(x), and f is lsc at x . In
particular we see that ∂f ∗∗(x) ⊇ ∂f (x) for all x . Precisely we have:

Legendre-Fenchel identity

y ∈ ∂f (x) ⇔ ⟨x , y⟩ = f (x) + f ∗(y) ⇒ x ∈ ∂f ∗(y),

the latter being also an equivalence if f is lsc, convex (if f = f ∗∗).
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“Subdifferential calculus”

A first simple example: minimizing f + g with g smooth.

Lemma
Assume x ∈ X is a minimizer of f + g, where f is convex and g is C1. Then for all
y ∈ X ,

f (y) ≥ f (x) − ⟨∇g(x), y − x⟩

that is, −∇g(x) ∈ ∂f (x) ⇔ ∂f (x) + ∇g(x) ∋ 0.

Proof: For t > 0 small enough,

f (x) + g(x) ≤ f (x + t(y − x)) + g(x + t(y − x)) ≤ f (x) + t(f (y) − f (x)) + g(x + t(y − x))

so that
g(x) − g(x + t(y − x))

t
≤ f (y) − f (x)

and we recover the claim in the limit t → 0.
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Remark: density of subgradients

Corollary
Let f be convex, lsc: then dom ∂f is dense in dom f .

Proof: Let x̄ ∈ dom f , τ > 0 and let xτ be the minimizer of |x − x̄ |2/(2τ) + f (x).
Then by the previous result,

x̄ − xτ

τ
∈ ∂f (xτ )

so that xτ ∈ dom ∂f . In addition, |xτ − x̄ |2 ≤ 2τ f (x̄) → 0 as τ → 0 since
f (x̄) < +∞.
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Remark: strongly convex functions in Hilbert spaces

Corollary
Let f be strongly convex with parameter µ > 0. Then for any x ∈ dom ∂f ,
y ∈ dom f and p ∈ ∂f (x),

f (y) ≥ f (x) + ⟨p, y − x⟩ + µ

2 |x − y |2

Proof: We use that f ′(y) = f (y) − ⟨p, y − x⟩ − µ|y − x |2/2 is also convex. We have, since p ∈ ∂f (x):

f ′(y) +
µ

2
|y − x |2 ≥ f ′(x) = f (x)

for all y , hence by the previous lemma, 0 = −µ(y − x)|y=x ∈ ∂f ′(x) and therefore f ′ is also minimal at x .
That is, f ′(y) ≥ f ′(x) = f (x) for all y , which is precisely the claim.
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Subdifferential calculus
The subgradient of a sum

Theorem
Let f , g be convex, proper.

For all x , ∂f (x) + ∂g(x) ⊂ ∂(f + g)(x).
If there exists x̄ ∈ dom f where g is continuous, then
∂f (x) + ∂g(x) = ∂(f + g)(x). (In finite dimension, a relevant, weaker
condition is ri dom g ∩ ri dom f ̸= ∅.)

Proof: the inclusion is obvious from the definition. For the reverse inclusion, we assume p ∈ ∂(f + g)(x)
and want to show that it can be decomposed as q + r with q ∈ ∂f (x) and r ∈ ∂g(x).
By definition, we have that f (y) + g(y) ≥ f (x) + g(x) + ⟨p, y − x⟩.
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Subdifferential calculus

Thanks to the assumption that g is continuous at x̄ , epi (g(·) − ⟨p, ·⟩) contains a ball B centered at
(x̄ , g(x̄) − ⟨p, x̄⟩ + 1) and has non empty interior. Denote E this interior, and F the following
translation/flip of epi f :

F = {(y , t) : −t ≥ f (y) − [f (x) + g(x) − ⟨p, x⟩]},

which is convex.
For (y , t) ∈ F , one has −t ≥ f (y) − [f (x) + g(x) − ⟨p, x⟩] ≥ −[g(y) − ⟨p, y⟩], that is t ≤ [g(y) − ⟨p, y⟩]
so that (y , t) ̸∈ E .
Hence by the separation theorem there exists (q, λ) ̸= (0, 0), such that for all (y , t) ∈ E , (y ′, t′) ∈ F ,

⟨q, y⟩ + λt ≥
〈

q, y ′
〉

+ λt′.

As t′ can be sent to −∞ (or t to +∞), λ ≥ 0. Moreover since x̄ is in dom f , if λ = 0 one finds that
⟨q, y − x̄⟩ ≤ 0 for all y ∈ dom g which contains a ball centered in x̄ , so that q = 0, which is a contradiction.
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Subdifferential calculus

Hence λ > 0 so that without loss of generality we can assume λ = 1.
In particular choosing t′ = f (x) + g(x) − ⟨p, x⟩ − f (y ′),

⟨q, y⟩ + t ≥
〈

q, y ′
〉

+ f (x) + g(x) − ⟨p, x⟩ − f (y ′).

for all (y , t) ∈ E . The closure of E contains epi (g(·) − ⟨p, ·⟩): indeed any (y , t) ∈ epi (g(·) − ⟨p, ·⟩) is on
the boundary of the set {ty + (1 − t)B : 0 < t < 1} ⊂ epi (g(·) − ⟨p, ·⟩).
Hence it follows that for all y , y ′,

⟨q, y⟩ + g(y) − ⟨p, y⟩ ≥
〈

q, y ′
〉

+ f (x) + g(x) − ⟨p, x⟩ − f (y ′)

⇔ f (y ′) + g(y) ≥ f (x) + g(x) + ⟨p, y − x⟩ +
〈

q, y ′ − y
〉

= f (x) + g(x) + ⟨p − q, y − x⟩ +
〈

q, y ′ − x
〉

showing that q ∈ ∂f (x) and r = p − q ∈ ∂g(x), as requested.

Remark: For f , g convex, proper, lsc. the result is also deduced from the theorem
on inf-convolutions...
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Subdifferential calculus

Theorem
Let A : X → Y be a continuous operator between two Hilbert spaces and f a
proper, convex function on Y. Let g = f (Ax), then if there is x̄ such that f is
continuous at Ax̄ , ∂g(x) = A∗∂f (Ax). In finite dimension, one can just require
that Ax̄ ∈ ri dom f .

Proof is similar (again, one inclusion is easy).
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Application: Karush-Kuhn-Tucker’s theorem

KKT’s Theorem
Let f , gi , i = 1, . . . , m be C1, convex and assume

∃ x̄ , (gi(x̄) < 0 ∀ i = 1, . . . , m) (Slater’s condition)

Then x∗ is a solution of
min

gi (x)≤0,i=1,...,m
f (x)

if and only if there exists (λi)m
i=1, λi ≥ 0 such that

∇f (x∗) +
m∑

i=1
λi∇gi(x∗) = 0,

m∑
i=1

λigi(x∗) = 0 (complementary slackness condition)
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KKT’s Theorem

Proof: Observe that since gi (x∗) ≤ 0 and λi ≥ 0 the complementary condition is also equivalent to:
∀i , gi (x∗) = 0 or λi = 0.
If the last statements are true, then x∗ is is a minimizer of the convex function f +

∑
i λi gi . Then

obviously for any x with gi (x) ≤ 0 for all i ,

f (x) ≥ f (x) +
∑

i

λi gi (x) ≥ f (x∗) +
∑

i

λi gi (x∗) = f (x∗).

Conversely, consider for all i the function

δi (x) =
{

0 if gi (x) ≤ 0,

+∞ else.,

then the problem is equivalent to minx f (x) +
∑

i δi (x). By Slater’s condition, we know that there exists x̄
where all functions f , δi are continuous. Hence by the previous theorems:

0 ∈ ∂(f +
∑

i

δi )(x∗) = ∇f (x∗) +
m∑

i=1

∂δi (x∗).
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KKT’s Theorem

It remains to characterize ∂δi (x∗).
If gi (x∗) < 0 then it is negative in a neighborhood of x∗ and ∂δi (x∗) = {0}.
If gi (x∗) = 0, then we need to characterize the vectors p such that for all y with gi (y) ≤ 0,

0 ≥ ⟨p, y − x∗⟩ .

Let v ⊥ ∇gi (x∗), and consider y = x∗ − t(∇gi (x∗) + v): then

gi (y) = −t ⟨∇gi (x∗), ∇gi (x∗) + v⟩ + o(t) = −t|∇gi (x∗)|2 + o(t) < 0

if t > 0 is small enough, hence
0 ≤ ⟨p, ∇gi (x∗) + v⟩ .

We easily deduce that we must have p = λi ∇gi (x∗), for some λi ≥ 0 (in other words,
∂δi (x∗) = R+∇gi (x∗)). The theorem follows.



Continuous
(convex)

optimisation

A. Chambolle

Monotone
operators
Subgradients of
convex functions

Elements of
monotone operators
theory

KKT’s Theorem

Remark: in case gi is affine it is enough to assume gi(x̄) = 0, this allows in
particular to treat also the case of affine equality constraints
(g(x) = 0 ⇔ (g(x) ≤ 0 and − g(x) ≤ 0)).
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Monotone operators in Hilbert spaces

A fundamental property of subgradients is the monotonicity: Using that for all
p ∈ ∂f (x), p′ ∈ ∂f (x ′):

f (x ′) ≥ f (x) +
〈
p, x ′ − x

〉
, f (x) ≥ f (x ′) +

〈
p′, x − x ′〉 ,

and summing both inequalities, we find

0 ≥
〈
p − p′, x ′ − x

〉
.

In 1D, this is equivalent to saying that ∂f is non-decreasing (if x ′ > x , p′ must be
≥ p). In general one says that ∂f is a “monotone operator”:

Definition
The operator A : X → P(X ) is monotone if and only if ∀x , x ′ ∈ X , ∀p ∈ Ax and
p′ ∈ Ax ′, one has 〈

p′ − p, x ′ − x
〉

≥ 0.
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Monotone operators in Hilbert spaces
More definitions

Definition
The operator A : X → P(X ) is (µ-)strongly monotone if and only if ∀x , x ′ ∈ X ,
∀p ∈ Ax and p′ ∈ Ax ′, one has〈

p − p′, x − x ′〉 ≥ µ|x − x ′|2.

It is (µ-)co-coercive if 〈
p − p′, x − x ′〉 ≥ µ|p − p′|2.

It is maximal if the graph {(x , p) : p ∈ Ax} ⊂ X × X is maximal with respect to
inclusion, among all the graphs of monotone operators.

In dimension 1: graphs of nondecreasing functions / (sub)gradients of convex functions.
In higher dimension, not true anymore (example: an antisymmetric linear mapping in Rd ,
d ≥ 2).
The subgradient of a convex function f is monotone, strongly monotone if f is strongly
convex, co-coercive if ∇f is Lipschitz (“Baillon-Haddad”).
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Monotone operators in Hilbert spaces

Lemma
Let f be convex. Then ∂f is a maximal-monotone operator if and only it is the
subgradient of a lower-semicontinuous function.

Proof: (cf Rockafellar): if f is lsc, to show that ∂f is maximal we must show that if x ∈ X and p ̸∈ ∂f (x)
then one can find y and q ∈ ∂f (y) with ⟨p − q, x − y⟩ < 0.
Replacing f with f (x) − ⟨p, x⟩ we can assume that p = 0, that is, 0 ̸∈ ∂f (x).
Consider now the minimizer of f (y) + |y − x |2/2 which exists as this function is strongly convex and lsc.
It characterized by ∂f (y) + (y − x) ∋ 0 that is, q = x − y ∈ ∂f (y). Then, necessarily q ̸= 0 otherwise this
means 0 ∈ ∂f (x). Then,

⟨p − q, x − y⟩ = ⟨−q, x − y⟩ = −|x − y |2 = −|q|2 < 0.

This shows that ∂f is maximal.

Conversely if ∂f is maximal, since ∂f ∗∗ ⊃ ∂f , then this operator is also the subgradient of the convex,
lsc function f ∗∗. We are not proving here that f = f ∗∗, only that ∂f is also the subgradient of the convex,
lsc function f ∗∗. f and f ∗∗ could differ at some point where ∂f (x) = ∅.
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Monotone operators in Hilbert spaces

Definition
Given A a monotone operator, with graph {(x , p) : p ∈ Ax}, its inverse is
A−1 : p 7→ {x : Ax ∋ p}, with graph {(p, x) : p ∈ Ax}.
Therefore, it is maximal if and only if A is maximal, co-coercive if and only if A is
strongly monotone.

Remark: For f convex lsc.*, (∂f )−1 = ∂f ∗ (by Legendre-Fenchel’s identity).
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Monotone operators in Hilbert spaces
Sum of Maximal-Monotone operators

Lemma

Let A, B be maximal monotone operators. if
˚︷ ︸︸ ︷

dom A ∩ dom B ̸= ∅, then A + B
(which is always monotone) is maximal monotone.

(Cor 2.7 in H. Brézis: Opérateurs maximaux-monotones et semi-groupes de
contraction dans les espaces de Hilbert).
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Monotone operators in Hilbert spaces
Minty’s theorem

Theorem (Minty 62)
The resolvent of a maximal-monotone operator A, defined by

x 7→ y = (I + A)−1x =: JAx ⇔ y + Ay ∋ x

is a well (everywhere) defined single-valued nonexpansive mapping. (Conversely, for
a monotone operator A if (I + A) is surjective then A is maximal.)
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Minty’s theorem

Proof: We introduce the graph G = {(y + x , y − x) : x ∈ X , y ∈ Ax}. If (a, b), (a′, b′) ∈ G, with
a = y + x , b = y − x and a′ = y ′ + x ′, b = y ′ − x ′, then

|b − b′|2 = |y − y ′|2 − 2
〈

y − y ′, x − x ′
〉

+ |x − x ′|2 = |a − a′|2 − 4
〈

y − y ′, x − x ′
〉

≤ |a − a′|2

that is G is the graph of a 1-Lipschitz function. [Conversely, G 1-Lipschitz implies A monotone.]
Moreover, if G ′ ⊇ G is also the graph of a 1-Lipschitz function, then defining
A′ = {((a − b)/2, (a + b)/2) : (a, b) ∈ G ′} the same computation shows that A′ ⊇ A is the graph of a
monotone operator, hence if A is maximal: A′ = A and G ′ = G.
In particular, if G is defined for all a then clearly G and therefore A are maximal (Remark: being
1-Lipschitz, G is necessarily single-valued).

So the theorem is equivalent to the question whether a 1-Lipschitz function which is not defined in the
whole of X can be extended.
This result (which is true only in Hilbert spaces) is known as Kirszbraun-Valentine’s theorem (1935), we
give a quick proof derived from Federer (Geometric measure theory, 2.10.43).
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Minty’s / Kirszbraun-Valentine’s theorem

The basic brick is the following extension from n to n + 1 points:

Lemma
If (xi)n

i=1, (yi)n
i=1 are points in Hilbert spaces respectively X , Y such that

∀i , j , |yi − yj | ≤ |xi − xj |, then for any x ∈ X there exists y ∈ Y with
|yi − y | ≤ |xi − x | for all i = 1, . . . , n.

Proof: It is enough to prove this for x = 0: we need to find a common point to B̄(yi , |xi |). There is
nothing to prove if x = xi for some i , so we assume xi ̸= 0, i = 1, . . . , n.
We define

c̄ = min

{
c ≥ 0 :

n⋂
i=1

B̄(yi , c|xi |) ̸= ∅

}
> 0

(if the yi are distinct, which we may also assume). This is a min because the closed balls are weakly
compact, and we can consider y such that |y − yi | ≤ c̄|xi |, i = 1, . . . , n.
We must show that c̄ ≤ 1.
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Kirszbraun-Valentine’s theorem

Then: y must be a convex combination of the points (yi )i∈I such that |y − yi | = c̄|xi |.
Indeed, if not, let y ′ be the projection of y onto co {yi : i ∈ I}. As for any i ∈ I, ⟨yi − y ′, y − y ′⟩ ≤ 0 one
has, letting yt = (1 − t)y + ty ′, that for any i ∈ I:

|yi − yt |2 = |yi − y + t(y − y ′)|2 = |yi − y |2 + 2t
〈

yi − y , y − y ′
〉

+ t2|y − y ′|2

= |yi − y |2 + 2t
〈

yi − y ′, y − y ′
〉

− 2t|y − y ′|2 + t2|y − y ′|2

≤ |yi − y |2 − t(2 − t)|y − y ′|2 < |yi − y |2

if t ∈ (0, 2).
Hence if t > 0 is small enough, one sees that |yi − yt | < |yi − y | = c̄|xi | for i ∈ I, while since for i ̸∈ I,
|yi − y | < c̄|xi |, one can still guarantee the same strict inequality for yt if t is small enough. But this
contradicts the definition of c̄, since then there would exists c < c̄ such that yt ∈

⋂n
i=1 B̄(yi , c|xi |).
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Kirszbraun-Valentine’s theorem

Hence wee can write y =
∑

i∈I θi yi as a convex combination (θi ∈ [0, 1],
∑

i∈I θi = 1). Then since
2 ⟨a, b⟩ = |a|2 + |b|2 − |a − b|2,

0 = |
∑
i∈I

θi yi − y |2 =
∑
i,j∈I

θi θj ⟨yi − y , yj − y⟩

=
1
2

∑
i,j∈I

θi θj
(

|yi − y |2 + |yj − y |2 − |yi − yj |2
)

≥
1
2

∑
i,j∈I

θi θj
(

c̄2|xi |2 + c̄2|xj |2 − |xi − xj |2
)

= c̄2
∑
i,j∈I

θi θj ⟨xi , xj ⟩ −
1 − c̄2

2
|xi − xj |2

which shows that
(1 − c̄2)

∑
i,j∈I

θi θj |xi − xj |2 ≥ 2c̄2|
∑
i∈I

θi xi |2

so that c̄ ≤ 1. Hence, y satisfies |y − yi | ≤ |xi |, as requested, which shows the Lemma.
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Minty’s theorem

We finish the proof of Minty’sTheorem: if there exists x ∈ X such that {x} × X ∩ G = ∅, consider the set

K =
⋂

(a,b)∈G

B̄(b, |x − a|)

which is an intersection of weakly compact sets.
We show that because the compact sets defining K have the “finite intersection property”, K can not be
empty: Choosing (a0, b0) ∈ G, if B̄0 = B̄(b0, |x − a0|), we see that

K = B̄0 ∩

 ⋂
(a,b)∈G

B̄(b, |x − a|)


hence B̄0 \ K = B̄0 ∩

⋃
(a,b)∈G B̄(b, |x − a|)c .

If this is B̄0, by compactness one can extract a finite covering
⋃n

i=1 B̄(bi , |x − ai |)c for (ai , bi ) ∈ G,
i = 1, . . . , n. We find that

B̄0 ∩
n⋃

i=1

B̄(bi , |x − ai |)c = B̄0

or equivalently that

B̄0 ∩
n⋂

i=1

B̄(bi , |x − ai |) = ∅

which contradicts The Lemma.
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Minty’s theorem

Hence, B̄0 \ K ̸= B̄0 which means that K ̸= ∅. Choosing y ∈ K , we find that G ∪ {(x , y)} is the graph of a
1-Lipschitz function and is strictly larger than G, which contradicts the maximality of A.

The non-expansiveness of (I + A)−1 follows from, if y + Ay ∋ x , y ′ + Ay ′ ∋ x ′, p = x − y ∈ Ay ,
p′ = x ′ − y ′ ∈ Ay ′:

|x − x ′|2 = |y − y ′|2 + 2
〈

p − p′, y − y ′
〉

+ |p − p′|2 ≥ |y − y ′|2 + |p − p′|2,

that is, for T = (I + A)−1:

|Tx − Tx ′|2 + |(I − T )x − (I − T )x ′|2 ≤ |x − x ′|2.

An operator which satisfies this is said firmly non-expansive.
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Reflexion operator

Given A maximal monotone, we define the Reflexion of A:

RA = 2JA − I = 2(I + A)−1 − I

Lemma
RA is nonexpansive, and in particular, JA = I/2 + RA/2 is (1/2)-averaged.

In fact one has even:
Proposition
For an operator T : X → X , the following are equivalent:

1 T is the resolvent of a maximal-monotone operator.
2 T is firmly non-expansive;
3 T is 1/2-averaged, that is, R = 2T − I is non-expansive;
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Reflexion operator

Proof of the lemma: We prove (2) ⇔ (3) in the theorem. It follows in an obvious way from
the parallelogram identity: for any x , x ′,

|Rx − Rx ′|2 = |(Tx − x) − (Tx ′ − x ′) + Tx − Tx ′|2

= 2|(I − T )x − (I − T )x ′|2 + 2|Tx − Tx ′|2 − |x − x ′|2 ≤ |x − x ′|2

⇔ |(I − T )(x) − (I − T )(x ′)|2 + |Tx − Tx ′|2 ≤ |x − x ′|2.

Remark: more generally, the parallelogram identity/strong convexity of | · |2/2 shows that:
Tθ is θ-averaged for some 0 < θ ≤ 1 (that is Tθ = (1 − θ)I + θT , T 1-Lipschitz) if and
only if for all x , x ′:

|Tθx − Tθx ′|2 + 1 − θ

θ
|(I − Tθ)x − (I − Tθ)x ′|2 ≤ |x − x ′|2

To finish the proof of the theorem, we have to prove that if an operator T = I/2 + R/2 is
(1/2)-averaged (R is non-expansive), then there exists a maximal monotone operator A
such that T = JA.
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Reflexion operator

The proof follows by the same (or reverse) construction as in the beginning of the proof of
Minty’s theorem: we consider the graph

G = {((x + y)/2, (x − y)/2) : x ∈ X , y = Rx} = {(Tx , (I − T )x) : x ∈ X }

and denote by A the corresponding operator (y ∈ Ax ⇔ (x , y) ∈ G). Then A is monotone:
if (ξ, η), (ξ′, η′) ∈ G , then for some x , x ′ ∈ X , ξ = (x + Rx)/2, η = (x − Rx)/2, etc., and
we find:

⟨ξ − ξ′, η − η′⟩ = 1
4 ⟨x + Rx − x ′ − Rx ′, x − Rx − x ′ + Rx ′⟩

= 1
4
(
|x − x ′|2 − |Rx − Rx ′|2

)
≥ 0.

Moreover, A is maximal, if not, one could build as before from A′ ⊃ A a non-expansive
graph {(ξ + η, ξ − η) : η ∈ A′ξ} strictly larger than the graph {(x , Rx) : x ∈ X }, which is
of course impossible. By construction, ATx ∋ (I − T )x for all x , hence
(I + A)Tx ∋ x ⇔ Tx = (I + A)−1x .



Continuous
(convex)

optimisation

A. Chambolle

Monotone
operators
Subgradients of
convex functions

Elements of
monotone operators
theory

A practical consequence: proximal point algorithm

If x0 ∈ X and xk+1 = (I + A)−1xk , k ≥ 0, and there exists x̄ with
Ax̄ ∋ 0 ⇔ (I + A)−1x̄ = x̄ , then xk ⇀ x where Ax ∋ 0 (KM’s theorem).
In particular if A = τ∂g for g convex, lsc and τ > 0,

xk+1 = (I+A)−1(xk) ⇔ xk+1 ∈ xk−τ∂g(xk+1) ⇔ xk+1 = arg min
x

g(x)+ 1
2τ

|x−xk |2

we see that the implicit gradient descent converges, as the iterations of a
1/2-averaged operator.

Definition
The resolvent of the subgradient ∂g of a convex, lsc function is called the
“proximity operator” (or “proximal”) of g :

proxg(x) = (I + ∂g)−1(x) = arg min
x ′

g(x ′) + 1
2 |x ′ − x |2.
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Moreau’s identity

Lemma
Let A be a maximal-monotone operator. Then for any x ∈ X ,

x = (I + A)−1(x) + (I + A−1)−1x .

Proof : one has y = (I + A)−1x ⇔ y + Ay ∋ x ⇔ y ∈ A−1(x − y), letting then z = x − y , this is
x ∈ z + A−1z ⇔ z = (I + A−1)−1x .

This is often written, for τ > 0:

x = (I + τA)−1(x) + τ(I + 1
τ A−1)−1( x

τ ),

or for A = ∂g , g convex lsc,

x = (I + τ∂g)−1(x) + τ(I + 1
τ ∂g∗)−1( x

τ ) = proxτg(x) + τproxg∗/τ ( x
τ ).
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Remark: Yosida regularization and gradient flows

Given A a maximal monotone operator, the maximal monotone operator
Aτ = [x − (I + τA)−1x ]/τ is called a Yosida approximation of A: it is a
(1/τ)-Lipschitz-continuous mapping, with full domain. In case A = ∂f , Aτ = ∇fτ
where

fτ (x) = min
x ′

f (x ′) + 1
2τ

|x − x |2.

The operator τAτ is firmly non-expansive, since I − τAτ is. It is a key tool for
establishing the existence of solutions to:

ẋ + Ax ∋ 0

(cf H. Brézis, Opérateurs maximaux-monotones et semi-groupes de contraction
dans les espaces de Hilbert).
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Back to Fenchel-Rockafellar duality

Consider again:
min
x∈X

f (Kx) + g(x)

with K : X → Y is continuous linear map and f , g convex, lsc. Then we have seen
that a solution can be found as a saddle-point of

L(x , y) = ⟨y , Kx⟩ − f ∗(y) + g(x),

that is (x∗, y∗) such that:

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x , y∗) (S)

for all x ∈ X , y ∈ Y. Then:
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Fenchel-Rockafellar duality: saddle point

By optimality in the saddle-point problem: Kx∗ − ∂f ∗(y∗) ∋ 0,
K ∗y∗ + ∂g(x∗) ∋ 0, that is:

0 ∈
(

∂g(x)
∂f ∗(y)

)
+
(

0 K ∗

−K 0

)(
x
y

)

meaning the solution can be found by finding the “zero” of the sum of two
monotone operators. So a solution can be computed if we have an algorithm for
solving Ax + Bx ∋ 0, A, B maximal monotone.
This can be solve by a class or methods called (operator) “splitting algorithms”.
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