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- General problem:
0c€Ax or 0¢€ Ax+ Bx

where A, B are maximal monotone operators (which may or may not be
subgradients).
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XKL — xk _ 1pk ok e Axk.

Issue: Even if A is single-valued and Lipschitz continuous, then this might not work.

0 -1
Example: A= (1 0 ) Then,

The eigenvalues of this matrix are 1 + +7/ with modulus v/1 + 72 and the iteration
always diverges (unless x° = 0).
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Abstract problems

So one needs a stronger condition on A. We recall that the gradient descent works

for convex functions with Lipschitz gradient, and the proof relies on the
co-coercivity.

Let A maximal monotone be ji-co-coercive (in particular, single-valued):
(Ax — Ay, x —y) > p|Ax — Ay|>.

Assume there exists a solution to Ax = 0. Then the iteration x*T1 = xk — + Axk
converges to x* with Ax* =0 if0 <7 < 2pu.

Remark: this is the same as A firmly non-expansive.

Then, the proof relies on proving that / — 7A is an averaged operator.
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(I — 7A)x — (I — 7'A)y|2
Absractprtens = |x — y|? =27 (x — y, Ax — Ay) + 72| Ax — Ay|?
< |x = y[P =72 —7)|Ax — Ay[*.
This shows that if 0 <7 < 2u, I — 7A is 1-Lipschitz (nonexpansive). Hence for 7 < 2p,

I=7A=(1-3)+5.(1-(2un)A)

is averaged. By The K-M Theorem, the iterates weakly converge, as k — oo, to a fixed
point of (/ — 7A) (if it exists). If 7 = 0 this is not interesting, if 0 < 7 < 2y, then it is a
zero of A, which exists by assumption.
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In case B is just L-Lipschitz continuous, the following method was proposed in
1976 by G. M. Korpelevich:
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yk = xk — 1Bxk
XK+l = xk _ 7 pyk

If TL < 1, then the algorithm generates sequences x* and y* which (weakly)

xk —yk| — 0.

converge to a solution of Bx 3 0, if there exists one. In addition,

Remark: the original paper has an additional projection step (for a convex
constraint), the proof is almost identical.
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Abstract problems

Extragradient method

Proof: For this algorithm we cannot use out of the box a previous theorem. We compute, for x* with
Bx* 30,

kL2 =[xk —x* 242 <Xk Xk xk>+|xk+17xk|2 = [xk—x* 227 <Xk — X, Byk>+\xk+lka|2.
We use then that <xk — x*, Byk> = <xk — yk 4 yk — x* Byk — BX*> > <xk — yk, Byk> and deduce:

XKL 312 < [xK—x* 227 <Xl< — K Byk>+\xk+1—xk|2 = [xK—x*|242 <Xk Y xk>+|xk+1—xk 2
It follows:

|Xk+1 _X*|2 S ‘Xk _X*|2 4 |Xk+1 _yk|2 _ |Xk _yk|2

_ |Xk _ X*‘Z + |7'Byk _ 7_BXI<|2 _ |Xk _yk|2 < IX/( _X*|2 _ (1 _ 7_2L2)|yk —Xk|2.

We deduce, when 7L < 1, that [xk — x*| is decreasing (Fejér-monotonicity of the sequence), that

|xk — y¥| — 0 (and therefore also |xk*1 — y¥| and |xk*1 — xk|) and can continue as in the proof of KM's

theorem.
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One also needs to check that a fixed point is a solution! A fixed point satisfies:
y = x —7Bx, x = x — 7By. Hence one has y — x = 7(By — Bx) so that
ly — x| <7Lly —x|. f 7L <1 then y — x =0 and Bx = 0. O
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. Now we consider the “implicit descent":
xk1 e xk — 7 AxKtT
This is precisely which is solved by
XKL= (1 4 7A) " IxK = U axK

which is well-posed for A is maximal monotone.

This iteration is known as the proximal point algorithm. It obviously converges to a
fixed point as the operator is (1/2)-averaged (if the fixed point, that is a point with
Ax = 0, exists).
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The reflexion R, = 2(/ +7A)~! — I is 1-Lipschitz and one can generalize as
st peblns follows:

xk1 = (1- Gk)xk + 0k R ax* = Xk + 20, ((I + TA)_lxk — xk) = xK — 20, 7A, XK,

for0 <0 <6, <6<1.
We still get convergence.
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Abstract problems

Proximal point algorithm

Theorem (PPA Algorithm)

XKFL = 5K N (14 T A) Ik — XK. (1)

If there exists x with Ax > 0, then x* weakly converges to a zero of A.

We could also consider (summable) errors. (See Bauschke-Combettes for variants,
Eckstein-Bertsekas for a proof with errors.)

Proof. The proof follows the lines of the proof of the KM Theorem.
We observe that obviously, |x*1 — x|? < |xk — x|? for each k > 0 and for each x with Ax > 0. But we can

be more precise. One has:
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skt x|2 = \xk - ><|2 + )\i\JTkAXk — ><k|2 + 2 <Xk - X, JTkAXk — xk>
= I x4 Xk — P

+ Ak ([ drax® = x? = x5 = x? = [Jr axk = x4?) .
As J;, a is firmly non-expansive:
\JTkAXk — X|2 + (1 — JTkA)Xk — (- J.,-kA)X|2 < \xk — X|2

where in addition (/ — J;, a)x = 0 so that |(/ — J;, a)x¥ — (I — J;, a)x|? = |x¥ — Jr ax¥[2. Hence:

|Xk+1 — x|2 < ‘Xk — x|2 + Xi\JTkAxk — xk|2 — 2>\k\JTkAxk — Xk|2

= 3K = x| = A2 = M) [ oaxt — XK.
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Letting ¢ = A(2 — X) > 0, we deduce that (x¥), is Fejér-monotone with respect to {x : Ax 3 0} and that

n
€3 Idmax® = XK 4 XL = ]2 < |x0 — x]2

k=0

for all n >0, in particular |J-, ax* — x¥| — 0 (as well as, by the scheme, x**1 — xk).
We would like to deduce convergence as in the proof of KM's Theorem. Yet, with varying 7, it is not
obvious that a limit point X of a subsequence x¥ is a fixed point (of what?).
But one proves that Ax > 0 using the maximal-monotonicity of A. If x’ 5 X, y’ € Ax/, denoting
ek = J.rkAxk — xk — 0 we have:

e

Ax* + e 3 2k

Tk

so that

In the limit along the subsequence x*, we find (y',x" —x) >0, so that Ax 3 0. The rest of the proof relies

on Opial's lemma and is as in the proof of the KM Theorem.
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(MG \\Ve can now mix the implicit and explicit algorithms: Let A, B be
maximal-monotone, with B j-co-coercive. We define the forward-backward

splitting algorithm as:
XL = (14 7 A) (1 - B

If 0 < 7 < 2u, the algorithm is the composition of two averaged operator —
converges weakly to a fixed point if it exists:

(I +7A) Yl —7B)x = x & x — 7Bx € x + TAx < Ax + Bx 3 0.

(As B is continuous, this is equivalent to (A + B)x > 0. Hence, if A+ B has a
zero, this algorithm converges to a zero of A+ B.)
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Introduced under the following form in a paper of Lions and Mercier (79):
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XK = J a2 — x5+ (1 = Jg)x*

Let x° € X. Then x* — x such that w = J,gx is a solution of Aw + Bw > 0 (if it
exists).
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XK = J a2 — x5+ (1 = Jg)x*

Splitting methods

Let x° € X. Then x* — x such that w = J,gx is a solution of Aw + Bw > 0 (if it
exists).

To prove this, we express the iterations in terms of the reflexion opeators:

ha=3143Ra, Jrg=731+3R 5
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I+ R, |- R,
Jea(2drg — Dx + (I — Jog)x = ( > A(R,5) + ) B) (x)

Splitting methods _ /+ R’T’A (@] RTB (X)
2

It follows that the iterates are of an averaged operator (with 1/2).
A fixed points satisfies:

x=J;aRrg — Dx+ (I — Jog)x & w = Jgx = J-a(2w — x)
S wH+HTAW D 2w — x & TAW D w — X

Now since w + 7Bw 3 x, this is TAw + 7Bw 3 0, which shows the theorem. O
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Remark: In addition: one can consider an “over-relaxed” iteration with operator:
(1 — 9)/ 4+ O0Rp0o R =1+ 2‘9(JTA(2JTB - /) — JTB)'

for 0 < 0 < 1. The case # = 1 is called the “Peaceman-Rachford” splitting and
converges under some conditions on A, B.
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Forward-Backward

Descent algorithms: Forward-backward descent

In case A= 0g, B=Vf, g,f convex, Isc, f with L-Lipschitz gradient, the
forward-backward splitting solves dg(x) + Vf(x) = 0: then x is a minimizer of the
composite minimization problem:

min F(x) := f(x) + g(x).

X

We consider the operator:

X+ & = T = prox, (X — 7VF(X)) = (I + 70g) (X — TVF(X)).

It corresponds to one explicit descent step for f followed by an implicit descent step
for g.

[Also “composite” gradient descent, where (T-(x) — x)/7 is the “composite”

gradient of f + g, cf Nesterov, 2005]
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Forward-Backward descent with fixed step (“ISTA")

We choose x° € X and let xkT1 = T.x* for fixed k. Then we have seen that if
7 < 2/L, the methods converges to a fixed point of T which is a minimizer of F.
In this case we can additionally show, at least for 7 < 1/L:

F(Xk) —F(x") < ﬁ|x* 7X0|2

while in case f is yif convex and/or g is (g convex (fif, jtg > 0, puf + pg > 0) one
shows:
k 147 *12 k1+7 0 *|2
F(x*)— F(x™) + “g|x — x*|* < W S xD — x*]%

where w = (1 — 7pu¢) /(1 + Tpg) < 1.



Proof: descent inequality

Continuous
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Ix —x2 _1-7L|x—x|? . Ix — %2
F 1-— > F 1
00+ (1= ) 2 2 ST B R 4 (14 )
In particular, if 7L <1,
-2 &2

X — X X —X

Forward-Backward F(X) =+ (]. — TMf) | | 2 F(),Z) + (]' + Tﬂg) ’ 20 |

The proof relies on the fact that X is obtained as a minimizer of
1
min £(%) + (VF(%),x = %) + g(x) + 5-[x — x|?

which is (p1g + 1)-convex.



Descent inequality
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A. Chambolle f(R) + (VF(X),x — X) + g(x) + 2—|x —x?
T

1 1
> F(X) + (VA(R), % = %) + 8(%) + & = X* + (g + 2) 5 Ix = I
Now, on the one hand we have:

F(x) = f(x) + &(x) = £(X) + (VF(X), x = %) + % x = %%+ g(x)

Forward-Backward

and on the other hand because Vf is L-Lipschitz we have

F(R) + (VF(R),% — %) + 8(%) > (%) — S|% — 2 + g(%) = F(%) -

N
N~

Combining these three inequalities we get the descent inequality:

&2
R X — X
> F(3)+ (14 ug) X0

x =%

27

F(x) + (1 = 7pr)
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- We consider the case pir 4 pig = 0. The descent rule with x = x* shows that:

1 1
F(Xk+1)+f|Xk+17X*|2 < F(X*)+f|Xk7X*|2
2T 2T

k

while for x = x* we get:

1
FOH) 4t — 2 < F ()

Forward-Backward 2T

We deduce that for N > 1,

=

-1

1 1
N(F(XN) — F(x*)) < F(XkH) — F(x*)+ 2—|XN - x*|2 < 2—|x0 —
T T

x
Il

0

* 2
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FISTA: acceleration for the FB splitting

Due in this form to Beck and Teboulle (2009), see also Nesterov (1983, 2004
“Introductory lectures...")
Algorithm: FISTA with fixed steps:

Choose x° =x"1 e X and t; > 0
for all Kk > 0 do

yk _ Xk +Bk(xk _kal)
K= Tyt = prox (v = 7V (y9))

where
_144/14417 k+1
ki1 = —5— 2 5,
_ t—1
ﬂk ~ Tt

end for
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In case p = i + p1g > 0 is known, then the previous method is not optimal. One
should choose:
1—qt24+/(1—qt2)2+4t?
tk+1 = 2 )
By = t—1 A Tpg =t Ty
Acceleration k tri1 1-Tps ’

where g = 7u/(1 4+ Tpg) < 1, or alternatively the fixed overrelaxation parameter:

5= VIt~ /T
NG
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FISTA: rate

If \/qto <1, to > 0, then the sequence (x¥) produced the algorithm satisfies

— gk -
Ft) = ) < min { ST b (PG = () + 810 - P

ifto > 1, and

F(x) = F(x*) <

min {1+ VL = V@), s | (BUFOE) = Fox) + 25800 2

if ty € [0, 1], where x* is a minimiser of F.

Common choices are ty = 0, tg = 1. The rate is “optimal’.
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Acceleration

FISTA: proof

Again we prove first pr + pg = 0.
In that case, the algorithm has the form xk*1 = T,y for some y* which we will specify later. One has for
all x:

xk+1)2

Ix — Ix — yk|?

F(Xk+1) + 5
-

< F()+
The idea is to choose x as a convex combination of a minimizer x* [or any point] and the old point xk, and
use the convexity to deduce a "better” decrease. Here we choose (as it will make the computation much
quicker) x = ((t — 1)x¥ 4+ x*)/t, t > 1, and we find:

t— 1)xK 4 x* — txkH1)2 (t — 1)xk + x> [(t — 1)xk + x* — tyk]?
F k+1 — F(x* ‘( <F( )—F *
() = F(x) + = < ; 6+ Py
t—1 [(t — 1)xk 4+ x* — tyk|?
< —=(F(x*) = F(x* .
< R - P + 3

Hence multiplying by t?> and adding an index k + 1 to t:

l)Xk Xt — tk+1Xk+l‘2
2T

<ty (tier — 1)(F(xF) = F(x¥))

2 (F(x*T1) — F(x™)) + |(tk+1 —

n [(tipr — 1)x* 4+ x* — 1y *]?
2T ’




FISTA: proof

Caniieus We see here that the factor in front of F(x¥) is strictly less than in front of F(x**1).
(convex)
optimisation
’ |(tkp = L)xK 4 x* — g xK12

2T

<t (tern — D(F(XF) = F(x9))

tioa (FOH) = F(x™) +

A. Chambolle

n [(tipr — 1)x* + x* — 1y ?
2T '

This iteration can be iterated if the sequences t; and yj satisfy:
trer1(thrr — 1) = t2 (< if x* is a minimizer)
(tkrr — DxF 4 X" — tgay® = (8 — DX x7 — gk

Acceleration

Then, indeed, we have

‘(tk-l—l _ l)Xk Xt — fk+1Xk+l‘2
27

ti o1 (FOKH) = F(x) +

[(te — 1)xk—1 + x* — t,x¥|?
27

< R (F(x*) = F(x*)) +
and summing we obtain

[(to — 1)x~1 4+ x* — toxO]2
2T

th(F(<N) = F(x*)) < 5 (F(x°) = F(x*)) +

with by convention y° = x® = x~1, and t; does not need to be > 1 (only t;).
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ter1(thrr — 1) = t2 (< if x* is a minimizer)

2 2 _
one can solve teop — ter — e = 0 and take

14 /144t
torr = ———>——

Acceleration
' observe that i to > 0, t1 >1 , Or one can also show that t, = kJr a—1 a, a > 2, satisfies t, > 1 and
= = k = k+1 Z
tl% I tipr < t/% for any k > 0.
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ter1(thrr — 1) = t2 (< if x* is a minimizer)

2 2 _
one can solve teop — ter — e = 0 and take

1+4/1+417

t =
k+1 5

(observe that if ty > 0, t; > 1), or one can also show that t, = (k+a—1)/a, a > 2, satisfies t,,1 > 1 and
t,%ﬂ —ty1 < tlf for any k > 0.

To ensure: (txr1 — 1)xK 4+ x* — ti1y* = (t — 1)x¥=1 + x* — t;,x¥ one has to take, simply,

te —1

(Xk — xkil).
tit1

yh=xk+
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Observe that
1+4/1+4t2
VoL
2 -2
hence if t; =1, tx > (k+ 1)/2. Then, the final bound shows, for to = 0 and
Acceleration T = ]./L

+ tx

which is “optimal.
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