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Abstract

The main purpose of this paper is to characterize the ¢-calibrability of bounded convex sets in
RN with respect to a norm ¢ (called anisotropy in the sequel) by the anisotropic mean curvature of
its boundary, extending the known analogous results in the euclidean case. As a by-product of our
analysis we prove that any convex body C satisfying a ball condition has a convex ¢-calibrable set
K in its interior such that, for any volume V' € [| K|, |C|], the solution of the ¢-perimeter minimizing
problem with fixed volume V in the class of sets contained in C' is a convex set. We also describe the
evolution of bounded convex sets in IR" satisfying a ball condition by the minimizing anisotropic
total variation flow.
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1 Introduction

The purpose of this paper is to give a characterization of convex calibrable sets (with respect to an

anisotropic perimeter) in IR extending the corresponding result for N = 2 [20] and the corresponding

results for the usual euclidean perimeter [36, 13, 2]. In the evolution of a set under anisotropic mean

curvature flow, calibrable facets are those which do not bend or break during the evolution process, and

they are characterized, in the convex case, in terms of the anisotropic curvature of the boundary [20].
The anisotropic perimeter Py in IRY is defined as

Py(E) := . o°(WF) au¥"t,  EC RN,

where % is the outward unit normal to the boundary OF of E and ¢° (the surface tension) is a norm

on IRN. We say that the anisotropy ¢° is crystalline if {¢° < 1} is a polyhedron.
Let F be a convex subset of IR?. For any mesurable set X C IR", | X| denotes the Lebesgue measure
of the set X. It has been proved in [20] that the following three assertions are equivalent.
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(a) F is ¢-calibrable, i.e., there is a vector field £ € L®(F, IR?), with ¢(£(z)) < 1 a.e. in F (where ¢
is the dual norm of ¢°), such that

Py(F)

—div € =20 = —t i F,
| (1.1)
¢-vlf = —¢°(F) indF,
where v (z) denotes the outer unit normal to OF at the point = € OF.
(b) F is a solution of the problem
wmin Py(X) = Ap|X]. (1.2)
(¢) We have
€ss sup ﬁ?}(x) < )\?7, (1.3)
TEQF
¢

where k%.(x) denotes the anisotropic curvature of OF at the point .

The characterization of the calibrability of a convex set in IR?, with respect to the euclidean perime-
ter, was proved by Giusti in [36], where he also proved that in a convex calibrable set the capillary
problem in absence of gravity, with any prescribed contact angle at its boundary, has always a solution.
In the euclidean case, this equivalence has been partly rederived in [13] where calibrable sets were used
to construct explicit solutions of the denoising problem in image processing. A simple proof of the
equivalence (b) < (c) was given in [40] (where it was studied in connection which Cheeger sets, see
Section 6). The extension of the above result for the euclidean perimeter and N > 3 was proved in [2].
In that case, the left-hand side of (1.3) has to be substituted by the sum of the principal curvatures
at the point x € 9F. Our purpose in this paper is to extend the above set of equivalences to the
anisotropic case, for a convex set in IR which satisfies a ball condition (see Definition 2.7).

The proof of the equivalence (a) < (b) is the same as in the euclidean case and it is independent
of the dimension N (see [13, 2]). We notice that the supremum of the curvature Hg in (1.3) has to be
substituted with the number (N — 1)||H¢é||w, where ||H¢(}||oo is defined in Section 2.5 and denotes the
L®°-norm of the anisotropic mean curvature of dC. To prove (b) < (c¢) we follow the strategy used in
[2] for the euclidean case, thus, we embed the variational problem (1.2) in a family of problems

)r(ngu(}PMX) — A X], A >0, (1.4)

and we study the dependence of its solution on A. In particular, we prove that C is a solution of (1.4)
if and only if A > max{)\g, (N — 1)||H‘é||oo} The solutions of (1.4) are related to the solution of the
variational problem

. o 1 )
D Ty - X d ’ > 0. 1.5
uer(RnJ%I)%Lz(RN) RN ¢ ( U) 9 /RN (u C) T 1 ( )

Indeed, it turns out that the level sets of the solution of (1.5) embed the solutions of (1.4) for A € [0, p].
Since the solution u of (1.5) satisfies the equation

v — p~tdiv (0¢°(Dv)) = 1 inC
(1.6)
0¢°(Dv) - v = —¢°(vY) in 0C
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(the meaning of d¢°(Dwv) will be explained below) and the solutions of (1.6) can be approximated by

the solutions u,. of
T°(D
v — p~ldiv (Dv) =1 in C
€2 + ¢°(Dv)?

(1.7)

) e

as € = 0 (where T°(z) = 39(¢°)%(z), = € IR"), we use the result of Korevaar [41] to conclude that u
is concave in C, hence also continuous there. This implies the uniqueness and convexity of solutions of
(1.4). Thus, by studying the dependence on X of solutions of (1.4), we can prove that if C satisfies the
curvature estimate (1.3) but is not a minimum of (1.2), then it can be approximated from inside by
solutions C) of (1.4), with A — p and g > )\g. As we shall prove in Proposition 7.1, this implies that
(N —1)|HS |00 > A%, a contradiction.

As an interesting by-product of our analysis we obtain that solutions of (1.4) are convex sets. Since
(1.4) can be considered as the functional obtained by applying the Lagrange multiplier method to the
area minimizing problem

ng}'l;g':VPMX ) (1.8)
where 0 < V' < |C|, we obtain that, for some range of volumes, the solutions of this isoperimetric
problem with fixed volume V are convex sets. The range of values of V' for which the above result
holds is [|K|,|C|] where K is a convex ¢-calibrable set contained in C obtained as solution of (1.4) for
a certain value of A (see Section 6). This extends the analogous result in [2]. In the euclidean case, a
similar result has been also proved by E. Stredulinsky and W.P. Ziemer [53] in the case of a convex set
C containing a ball B such that 0B N 0C is a meridian of B, and we mention the result of C. Rosales
[48] when C is a rotationally symmetric convex body.

Finally, let us mention that our results enable us to describe the evolution of any convex set in R,
satisfying a ball condition, by the minimizing anisotropic total variation flow. The same result for the
euclidean case was proved in [1] (for N = 2) and in [2]: as in those papers, it can be extended to unions
of convex set which are far apart from each other. Other examples of evolution are given in [47].

Let us describe the plan of the paper. In Section 2 we collect some preliminary definitions and
results about anisotropies, regularity conditions in the anisotropic case, functions of bounded variation
and Green’s formula. In Section 3 we recall the subdifferential of the anisotropic total variation in R
and we define ¢-calibrable sets. In Section 4 we relate the solution of the variational problem (1.4)
with the solution of (1.5) and we study the basic properties of its minimizers. In Section 5 we prove
the concavity of solutions of (1.5) for a certain range of values of y. This will imply the convexity of
the solutions of (1.4) for an interval of values of A\. In Section 6 we prove the convexity of solutions
of (1.8) when V' € [|K|,|C|] where K is a certain convex ¢-calibrable set contained in C. Section 7 is
devoted to the characterization of the ¢-calibrability of a convex set in terms of the anisotropic mean
curvature of its boundary. Finally, in Section 8 we characterize the ¢-calibrability of the convex sets
which satisfy a ball condition, and we describe the evolution of such sets by the minimizing anisotropic
total variation flow.
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reference BFM2003-02125. The third author acknowledges partial support by PNPCG project, reference
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of the Scuola Normale Superiore di Pisa.



2 Preliminaries

2.1 Notation

Given an open set A C IRY and a function f : A — IR, we write f € C'(A) (resp. f € Cllo’cl(A)) if
f € CY(A) and Vf € Lip(A; RY) (resp. Vf € Lipy,.(4; RY)). Let B C IR" be a set; we say that B
(or OB) is of class C!'! (resp. Lipschitz) if OB can be written, locally around each point, as the graph
(with respect to a suitable orthogonal coordinate system) of a function f of class Cb! (resp. Lipschitz).

Given two nonempty sets A, B we denote by dy (A, B) the Hausdorff distance between A and B. We

denote by X4 the characteristic function of A, and by A (resp. int(A)) the closure (resp. the interior
part) of A.

We let SV=1:={¢ € RV :|¢| =1} and for p > 0 we let B, := {z € R" : |z| < p}. We denote by
HN~1 the (N — 1)-dimensional Hausdorff measure in IRY, and by | - | the Lebesgue measure. Given a
function f defined on the boundary 0C of a set C, we set || f|| o (ac) to be the H N1 essential supremum
of |f| on OC.

We shall use the notation f(t) € O(t) if 1)

i is bounded as t — 0.

2.2 Anisotropies and distance functions

In the sequel of the paper, the function ¢ will always denote an anisotropy, i.e., a function ¢ : RY —
[0, 00) such that
¢(t€) = [t|p(€) V€€ RM, Vi€ R. (2.1)

and
ml¢| <€)  VEe RV, (2:2)

for some m > 0. In particular ¢(£) = ¢(—¢) for any & € IRY. Observe that there exists M € [m, +00)
such that (&) < M|¢| for all ¢ € RN. We let W, := {¢ < 1}. The polar function ¢° of ¢ (also called
surface tension) is defined as ¢°(€) := sup{n- £ : ¢(n) < 1} for any & € IRN. If ¢ is an anisotropy, then
¢° is also an anisotropy and there holds (¢°)° = ¢.

By a convex body we mean a compact convex set whose interior contains the origin. A convex body
is said to be centrally symmetric if it is symmetric with respect to the origin. If ¢ is an anisotropy,
then Wy := {£: ¢(§) < 1} (sometimes called Wulff shape) is a centrally symmetric convex body. If K
is a convex body, the function hx (§) := sup,cx n - € is called the support function of K7 notice that
{(hx)° <1} =K.

As usual, we shall denote by 0¢(¢) the subdifferential of ¢ at ¢ € IRYN. If ¢ is differentiable at &, we
write V¢(€) in place of 9¢(€). If @ is a convex function defined on a Hilbert space, we still denote by
0® the subdifferential of ®.

Given a nonempty set £ C RN, we let

dg(z, ) := inf p(e —y), @€ R

We denote by dq}f the signed ¢—distance function to OF negative inside E, that is
dg(x) = dy(z, E) — d¢(a:,RN \ E), z e RY. (2.3)

Observe that |dg(a:)| =dg(z,0F).



The function dg is Lipschitz and at each point z where it is differentiable we have ¢° (Vdg (x)) =1.
We set
uf = VdgJ on OF, (2.4)

at those points where Vd(#{E exists. When ¢ is the euclidean norm, i.e., ¢(£) = |¢|, we set v = I/ﬁ and

By =W,,- We have
e

- P (vE(2))
Let T° be the multivalued map in IR defined by

v ()

T°(z) = %8((}50)2(33), z e RV

T° is a maximal monotone operator mapping Wge onto Wy. If E is Lipschitz, at HV~! a.e. = € OF
we have

(vg(x),p) =1 Vp € T°(vg(x)).
Vector fields which are selections in 6¢°(qu}f ) are sometimes called Cahn-Hoffman vector fields, and
we denote by Norg(9E, IRY) the set of such fields.

Definition 2.1. We say that ¢ € Ciﬁl (resp. C) if ¢2 is of class CLH(IRY) (resp. C°(IRN \ {0}))
and there exists a constant ¢ > 0 such that V?(¢?) > ¢ Id almost everywhere. We say that a centrally
symmetric convezx body is of class Ci_’l (resp. CS°) if it is the unit ball of an anisotropy of class C}gl

(resp. C°).
Definition 2.2. We say that ¢ is crystalline if the unit ball Wy of ¢ is a polytope.
Remark 2.3. Observe that

(a) ¢ €Cl' (resp. ) if and only if ¢° € C}'" (resp. C°) [51, p. 111];

(b) ¢ is crystalline if and only if ¢° is crystalline.

2.3 ¢-regularity and the RWW,-condition

Following [16, 19, 20, 17] we define the class of ¢-regular sets and Lipschitz ¢-regular sets (these latter
are a generalization of sets of class C1'! in the euclidean case).

Definition 2.4. Let E C RN be a set. We say that E is ¢-reqular if OF is a compact Lipschitz
hypersurface and there exist an open set U D OE and a vector field n € L®(U; IRN) such that divn €
L*(U), and n € 3¢°(Vdf) almost everywhere in U. We say that E is Lipschitz ¢-regular if E is
#-regular and n € Lip(U; RY).

It is clear that a Lipschitz ¢-regular set is ¢-regular. With a little abuse of notation, sometimes we
will denote by (E,n), by (E,U) or by (E,U,n), a ¢-regular set.

Observe that, in general, vector fields n are not unique, unless ¢ € Ci_’l. When ¢ € Cj_’l the inclusion
ne 8¢°(Vdf ) becomes an equality; in this respect we give the following definition.

Definition 2.5. Let ¢ € Ci_’l and (E,U) be a Lipschitz ¢-regular set. Let x € U be a point where there
exists Vdf(m). We set

nf(a:) = Vqﬁo(Vdf(:c)). (2.5)



Remark 2.6. Observe that (Wy,n), with n(z) := z/¢(x), is Lipschitz ¢-regular, and divn(z) =
(N —1)/¢(x) for almost every = € IRY.

The next definition will play an important réle in the sequel.

Definition 2.7. Let E C RN be a set with nonempty interior and R > 0. We say that E satisfies the
RWy-condition if, for any x € OF, there exists y € RYN such that

RWs+yCE and z € 0(RWy+vy).

The first assertion of the following result is proved in [17, Lemmata 3.4, 3.5], and the second one is
proved in [15, Proposition 3.9].

Lemma 2.8. Let ¢ be any anisotropy.
(i) If E is a Lipschitz ¢-regular set, then E and RN \ E satisfy the RWy-condition for some R > 0.
(ii) A compact convex set satisfying the RWgy-condition is ¢-regular.

If ¢ € C_lgl, we list some relations between ¢-regularity and the RWy-condition (see [15, Remark
4)).
Remark 2.9. Assume that ¢ € C_li_’l. The following assertions hold.
(a) E is Lipschitz ¢-regular if and only if E is of class C1L.

(b) Let C be a compact convex set which satisfies the RWy-condition for some R > 0. Then C is
Lipschitz ¢-regular (hence C' is of class C*! by (a)).

(c) E is Lipschitz ¢-regular if and only if E and R" \ E satisfy the RW,-condition for some R > 0.

2.4 BV functions, ¢-total variation and generalized Green formula

Let Q be an open subset of IRY. A function u € L' (2) whose gradient Du in the sense of distributions
is a (vector valued) Radon measure with finite total variation |Du|(2) in ©Q is called a function of
bounded variation. The class of such functions will be denoted by BV (€2). We denote by BVjo(€2) the
space of functions w € L} () such that wp € BV () for all ¢ € (). Concerning all properties
and notation relatively to functions of bounded variation we will follow [6].

A measurable set E C IRV is said to be of finite perimeter in § if |DXg|(Q2) < co. The (euclidean)
perimeter of E in () is defined as P(E,Q) := |DXz|(f2), and we have P(E,)) = P(RN \ E,Q). We
shall use the notation P(E) := P(E, RN).

Let u € BV(€). We define the anisotropic total variation of u with respect to ¢ in €2 [3] as

/Q¢°(Du) — sup {/Qudiva do o € CHQ:RY), p(o(z) < 1 Var € Q} . (2.6)
If E C IRN has finite perimeter in , we set
PolE.9) = [ °(DXs)
and we have [3]

Py(E,Q) = /Q . ¢°(v®) anN 7, (2.7)
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where 0*E is the reduced boundary of E and v¥ the (generalized) outer unit normal to E at points of
O*E.

Recall that, since ¢° is homogeneous, ¢°(Du) coincides with the nonnegative Radon measure in IRY
given by

#(Du) = ¢ (Vula)) do + 6 (D) 1D,

where Vu(z) dz is the absolutely continuous part of Du, and D*u its singular part.
Let Q be an open subset of IRY. Following [10], let

X5(Q) == {z € L®(Q R") : divz € L*(Q)}.

If 2 € X5(Q) and w € L%(Q) N BV (Q) we define the distribution (z, Dw) : C3°(2) — IR by the formula

((z, Dw), ) ::—/uupdivzd:v—/wz-Vgodw Vo € C°(9).
Q Q

Then (z, Dw) is a Radon measure in €2,

/(Z,Dw) = / z-Vwdr  Yw e L*(Q)nwhi(Q),
Q Q

oo

We recall the following result proved in [10].

and

g/ (2, Dw)| §||z||oo/ \Dw| VB C Q Borel set.
B B

Theorem 2.10. Let Q C RN be a bounded open set with Lipschitz boundary. Let u € BV (Q) N L2(1)
and z € X9(Q). Then there exists a function [z-v?] € L®(0Q) such that ||[z-VQ]||Loo(3Q) < Nzl oo (s m™y
and

/ u divz dz + / (z,Du) = [ [z-vYu dHN L.
Q Q o9

When Q = IRY we have the following integration by parts formula [10], for z € X3(R") and
w € L2(RYN) N BV (IRN):

/ w divz dzx +/ (z, Dw) = 0. (2.8)
RN RN

Remark 2.11. Let Q C IRY be a bounded Lipschitz open set, and let zn, € L*®(Q;RY) with
divzign € L2(Q), and 2oy € L¥(RN \ Q; RY) with divzey; € L% (Br\Q), for all R > 0. Assume that

[Zinn - Y(x) = —[Zout - sz\ﬁ] (z) for HN ™! —a.e z € 9Q.

Then if we define z := 2y, on Q and z := zoy on RN \ ©, we have z € L®(RN; RY) and divz €
L (IRN).



2.5 The anisotropic mean curvature

Let (E,U,n) be a ¢-regular set. For any p € [1, +00], we define
HYP(U,RY) := {N € L®(U; RN) : N € T°(Vd}), div N € IP(U)}.

Fix now do > 0 be such that U; := {|df| <t} CUfort € [0,0p]. Then, following [17] (see also
Theorem 2.12 below) there exists a vector field z; € L®(Uy, RN) such that z; € TO(Vdf) a.e. in Uy,
divz € L*(Up) and

div 2| oy < Idiv Zllpe@yy — VZ € Hy (U, RY). (2.9)

We point out that, even if the minimizer z; may be nonunique, its divergence is always uniquely defined.
In particular, it follows that
divz, = div z a.e. in Us, (2.10)

forall 0 < s < t.

Theorem 2.12. Let (E,U,n) be a ¢—regular set. Let 0 < 69 < R be such that Uy := {|dg| <&} CU,
and let (uh, 2"), ut € BVi,o(RN) N LE _(IRYN), be the solution of

loc

u" — hdivz" =df  in RV, (2.11)

where 2" € 0¢°(Vul) and (2", Du") = ¢(Du?) in D'(IRN). Then, there exists z € L°(IRN,R"), and
a subsequence hj — 0% such that 2Mi — Z weakly* in RN, where % is such that Z € T°(Vdf) in Uy and

Idiv 2oy < divalpoy) Vg € [1,00] (212)
More generally, z satisfies the following inequality
Idiv 2 pauy) < Idiv Zllgew,y — VZ € Hy V™ (Us, RY), (2.13)

for all g € [1,00] and for all 0 < § < &, where Us := {|d¥| < §}. Finally, if E is convez, then divz >0
¢
in Uy.

Let us recall that (2.11) has a unique solution u” € L2 (IRY) [25]. Moreover u" € L (IRY) [25]
and [[u"]| () < ||dg||Loo(B2R) + C for some constant C' which does not depend on h. Let us also
point out that u” is Lipschitz with a Lipschitz constant depending only on the Lipschitz constant of df .

(IRMN) of the solutions u” € LX (IRYN)

Indeed, by the results in [25] 4" can be obtained as limit in L} 0.

loc
of
u — hdiv9¢(Vu) 3 inf(d},n)  in RV, (2.14)

and, for any y € R"N, u”(- + y) is the solution of (2.14) with right hand side inf(d¥,n)(- +y). As in
[25], Corollary C.2, we prove that

(up, — un(- + ) lloo < [linf(df,n) — inf(dg, n)(- +y)llo < lld — di (- + y)lloo-

This implies that
1w = u"(- + 1)) T lloo < Ildh = di (- + 1)l co-

Interchanging the role of u” and u”(- +y) we deduce that

1V |oo < IV |l co- (2.15)
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We may also prove this along the lines of the proof of Theorem 3 in [25] which uses another approxi-
mation of (2.11) and viscosity solution theory.

Proof. For simplicity, let us denote d := df . By the remarks previous to the proof we have that

|u| < ¢\ on {d < A} where c, is a constant depending on X for any A > 0. Multiplying (2.11) by u" —d
and integrating by parts in {d < A} we obtain

/ (u — d)? dx = —h M (Vul — Vd) dx
{d<A} {d<A}

+h/ 2P A4S Wb — @) N,

8{d<\}

hence u? — d in L2 (IRN) as h — 0". By the estimate (2.15), we have that the convergence takes
place also locally uniformly in JRN. Moreover, modulo a subsequence, we may assume that z? — %
weakly* in L®(IRY) as h — 0. Let a < b and QZ,b := {u > a} N {d < b} be such that QZ,b C Up. Let
us assume that h varies along a sequence converging to 0. Since u” € BVjoc(IRY) we may assume that
a is such that {u” < a} is a set of finite perimeter in IR". Since u" converges to d locally uniformly

in RN we may assume h small enough so that {u” < a} C {d < b} and {u" = a} N{d = b} = 0. Let
P : IR — [0,00) be a smooth increasing function such that P > 0. Then

/Qh (uh — d)P(u" — d) :h/Qh div 2" P(u” — d)
a,b a,b

= h (div 2" — divn) P(u® — d) + h divn P(u? — d).
Qs Qap

The first term can be written as

/ (div 2" — divn) P(u" —d) = —/ (2" —n) - VP(u" — d)
Qt, Q

First, observe that

/ (2* —n)- VP —d) = Pt — d)(z" —n)- V(" — d)
Qr,

h
Qa,b

To prove that the second term is negative, we observe that
- [ (DX )~ DX PO =) = [ (DX o) = (0 DX P =
— [ (" DXagy) = (0. DXqac) Pl — .

Now, by the proof of Lemma 5.1 in [25] (see also Lemma 4 in [15]), we have that — (2", DX(yhcgy) =
¢° (DX {uh< s}), where the equality means the equality of both measures, for almost every s € IR and



we may assume that a has been chosen to satisfy this equality. On the other hand, since ¢(n) < 1, we
have that |(n, DX{yhcq))| < ¢°(DX{yn<q))- This implies that

[ (DXt cy) = (. DX <y )P = ) < 0.

By the same arguments we could have also chosen b > a from the beginning so that |(z", DX 14<py)| <
#°(DX(4<py) and (n, DX{q4<p}) = —¢°(DX(4<p}). Hence

|| (G DXagiy) = (0. DXpaci) Pl = ) >

Combining all these inequalities we obtain that
/ wWh—d)P —dy<h [ dive P! — d). (2.16)
QZ’ b QZ,b
Ifg<oo,let §=gq. It g =00, let § < co. Let P, be a sequence of increasing nonnegative functions
such that P,(r) — 771 locally uniformly as n — oo. Using P = P, in (2.16) we obtain

1 - ~
—/ (u — dy*)idz < / divn ((u — d)H)i~" da.
h Q" Q"

a,b a,b
Applying Young’s inequality we obtain

1 .
EH(U}I - d)+||L§(QZ,b) < ||d1V"||L<i(Q{;7b)-

Hence, we have
. h .
[(div 2 )+||L§(QZ,[J) < ||d1vn||Lti(QZ,b)-

Letting A — 0 and § — oo if ¢ = 00, we obtain

(v D) sy < ldivnllza,,)  Va € Lo, (27)
where Qg := {a < d < b}. Letting a = —dy, b — &, we deduce that
1(div 2) "l e (o) < Idivallpawey Vg € [1,00], (2.18)
I a similar way we obtain
1(div ) ey < Idivnllsayy Ve € Lo, (219)

Indeed it suffices to change u” into —u”, n into —n and to integrate in {u” < b} N {d > a} to obtain
(2.19). Both inequalities (2.18) and (2.19) prove (2.12).
h

h h

Now, we observe that " — d locally uniformly in RY, z* — % and divz" — divZ weakly in
L2 (Up). From this it follows that Z(z) € 0T°(Vd) a.e. in Up. To prove it, observe that since ¢(z") < 1
we deduce that ¢(Z) < 1. Let 9 be a test function with support contained in Uy. Then

¢°(Vd)ydz < liminf [ ¢°(Vul)y dz = lim inf / 2PVl dx
Uo Uo Uo

= liminf— divz"ulyp do — / 2 Vypul dz
Up Uo

- —/ div%dwda:—/ 5. Vdds
Uo Uop

= /E-Vdd;d:vg ¢°(Vd)p da.
Uo UO

10



Hence
/ Z-Vdydr = ¢°(Vd)y dx.
Up Uo
Since this is true for any test function ¢ with compact support in Uy we obtain that z - Vd = ¢°(Vd)
in Uy, hence Z € T°(Vd) in Uy.

To prove the inequality (2.13) we observe that if 0 < § < &y and Z € ﬁgiv’w(Ug,RN), then
(E,Us, Z) is ¢-regular and, by repeating the computations that lead to (2.12), we deduce that (2.13)
holds.

Finally, if E is convex, the inequality divZ > 0 follows from the inequality d < u", proved in [25,

Theorem 3]. O
From (2.10) and (2.13) it follows that, if F satisfies the assumptions of Theorem 2.12, the function

t = ||div 2t|| o (7,) = ||div 2| Lo (17,) is nondecreasing, hence we may take the limit
[Hlloo = Tim [|div 7 o (ur)- (2.20)

Let (E,n) be Lipschitz ¢-regular and let N € Nory(8E, RN) N Lip(9E, IRY). By [17, Lemmata 3.4,
3.5, 4.5], we have that
(i) there exists a neighborhood U of OE and § > 0 such that the map Fy : OF x (—4,0) — RY

defined by
Fx(z,t) = x + tN(x)

is bilipschitz, moreover
dg(m +tN(z)) =t, =€ 0FE,
and Vdf(w +tN(z)) = uf(:c) for any ¢t € (—d,0) and H"l-a.e. = € OF;
(ii) given y € U, there is a unique x € OF such that y = Fx(x,t) where ¢ = df(a:) We shall denote
this point z by 7n(y). This permits to extend the vector field N to a vector field N on U by the

formula
N¢(z) = N(nn(z)), z€U.

Using 7N, any vector field 1 can be extended from OF to U. Hence, from now on we shall write
7 instead of n¢, i.e. we shall assume that n is defined on a neighborhood of OF;

(iii) the trace of divN® (denoted by divN) is defined H¥ ~!-almost everywhere on OF and coincides
on OF with the tangential divergence of N to be defined below.

Finally, if (E,n) is a Lipschitz ¢-regular set and N € Nory(0E, R"), we may define the (weak)
tangential divergence div ;N : Lip(0F) — IR as follows

div,N ¢ ¢° (W) dHN 1 = /

N-n 1 div,n ¢°(vF) dHN 1 - / [(Id—n®n) V4] -N ¢° () dHV 1,
OE

oF oFE

where 9 € Lip(OF). As proved in [17], this divergence does not depend on the vector field n. Letting
Hgiv’p(aE,]RN) := {N € Norg(0E, R") : div,N € L?(OE)}  p € [1,+o],

we define N € H;iv’2 (OE,IRN) to be a minimizer (possibly nonunique) of the functional
/6 E(divT N)?g° (") dHN"t N e H{V(OE, RY). (2.21)

11



As proved in [17], the function div; Ny, does not depend on the choice of the minimizer Ny, of (2.21).
Moreover, by [17, Theorem 6.7] we have that div; Npyin € L*(JF) and

|divy Nimin||oo = min{||div, N|loo : N € H3 (9, R)}. (2.22)
Remark 2.13. Let ¢ € Ci’l and E be a Lipschitz ¢-regular set. Then
div ;Npin = divnf HNL —ae.on dF and (N — 1)||H%||C><> = ||div +Nminl| £ (95)- (2.23)

We do not know if the second equality in (2.23) holds for all Lipschitz ¢-regular set E C IRV.
However, we can prove it under the additional assumption that the anisotropy ¢ is crystalline and F is
a polyhedron.

Let us first observe that a polyhedron E C IRY is Lipschitz ¢-regular if and only if for all vertices
v of E there holds

Cv) := N 04° (V") # 0, (2.24)

F facet of E: veF

where vf' is the outer unit normal to F at the facet F.

Proposition 2.14. Assume that ¢ is crystalline and let E C RN be a Lipschitz ¢-regular polyhedron.
Then
(N = )| HElloo = [|div,Nmin| oo (o) -

Proof. Given a vertex v of E, we shall denote by N(v) a generic element of the set C(v), defined
by (2.24).

Letting E; := {df < t}, we know from [17] that there exists g > 0 such that E; is a Lipschitz
¢-regular polyhedron for all [t| < &. Let also N! . : E; — RY be a minimizer of ||div,N]| L2(0E,)s
which is equivalently a minimizer of ||div,N|| e (9s,) by [17]. Letting Hy := ||div Nl ||lLe(o8,), it is
enough to prove that the function t € [—dy, do] — Hy is continuous at t = 0 (hence it is also continuous
on the whole interval). Indeed, letting Z as in Theorem 2.12 and differentiating the equality ¢(z) = 1,
we obtain VZ - Vdg = 0 in a neighborhood of 0F. As a consequence, we get that div,z = divz a.e.
in that neighborhood, where the tangential divergence (which, in this case, is an euclidean divergence)
is computed with respect to 0F; at a point x € OF;. It follows that the field z can be obtained by
patching together the minimizing vector fields N’ . . which are defined on OF;.

Letting now F; be the facet of E; corresponding to the facet F' of E, we shall prove the equivalent
statement that the function

t— HF = [ldiv,Ney, (5,

is continuous at ¢ = 0 (notice that H; = maxp H/'). To simplify the notation we shall identify F; with
its orthogonal projection on the hyperplane spanned by F. Notice that, for ¢ small enough, the facet F;
can be obtained by parallelly translating the edges of F' of a distance proportional to ¢ (with a constant
depending on the edge) and possibly inserting new edges, with length of order ¢, near the vertices of
F. As a consequence, to a vertex v of F' will correspond some vertices (at least one) of F} which lie at
a distance of order ¢ from v. Notice that, for all the vertices v’ of F; corresponding to v, we still have
N(v) € C(v'). Moreover, there exists a constant C' > 0, depending on F, such that dy(0F;, 0F) < Clt|,
for all ¢ small enough. Let us also denote by F; the facet obtained by parallelly translating the edges
of F of a distance of 2C|t|, in the direction —v*'. We then have F;~ C F;, for all ¢ small enough. Notice
that, in this case, to a vertex v of F' corresponds only one vertex v~ of F, respectively, and we have

12



N(v) € C(v™). It follows that, to any vertex v’ of F; \ F; , we can uniquely associate a vertex v of F,
and we set N(v') := N(v). N
In order to prove the result, it is enough to construct a vector field N; on F;, with the property

| div, Ny || oo () = [|div Nuginl| oo (1) + O(2)

Let ¢ : RY — IRY be a one-parameter family of Lipschitz diffeomorphisms such that ¢;(F, ) = F
and || — Id||yy1e € O(t). We define the field N; to be equal to Ny, 0 9 on F, , and to the linear
interpolation of N (v') on F;\ F; (in order to do this we first perform a triangulation of F;\ F, , without
adding new vertices). The thesis now follows by observing that

148V, Nell oo g 1oy € O8)-
U

3 The subdifferential of the anisotropic total variation. ¢-calibrable
sets

Let ¢ : RY — IR be an anisotropy and let ¢° be its polar function. Since ¢° is homogeneous of degree
1, for any n € 9¢°(§) we have ¢°(§) = n - £. We also observe that

X-1<¢°(n) for any x € 3¢°(€), and any &,n € RY. (3.1)

Consider the energy functional ¥y : L2(IRN) — (—oo0, +oc] defined by
¢°(Du) if we L2(IRN)NBV(RY)
N
Ty(u) =4 B (3-2)
+00 if ue L?(RN)\ BV(IRN).

Since the functional ¥y is convex, lower semicontinuous and proper, then ¥, is a maximal monotone
operator with dense domain, generating a contraction semigroup in L2(IR") (see [22]). The next Lemma
gives the characterization of 0¥ (the proof is the same as the proof of Proposition 1.10 in [9], see also
[25], or [47] for more general cases).

Lemma 3.1. Let u € L>(RN) N BV (IRN). The following assertions are equivalent:
(a) v € OV y(u);

(b)
v e L?(RY) and (3.3)

3z € Xo(RY), ¢(z(z)) < lae., such that v = —divzin D'(RRV)

and

/ (z,Du) = [ ¢°(Du). (3.4)
RN RN
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From now on we shall sometimes write v = div (8¢°(Du)) instead of v € 0¥ y(u).

Under the rest of conditions of (b), condition (*) ¢(z(x)) < 1 is equivalent to say that (**) z(x) €
0¢°(Vu(z)) a.e. Obviously, by (3.1), (**) implies (*). Assume now that ¢(z(z)) < 1. Then (3.4)
implies that (z, Du) = ¢°(Du) as measures in IRY. Hence z(z) - Vu(z) = ¢°(Vu(x)) a.e.. Then

¢°(n) — ¢°(Vu(z)) > (2(z),n — Vu(z)) Vne RN
is equivalent to
¢°(n) > (2(z),n) Vne RY

and this follows from ¢(z(z)) < 1. We deduce that z(z) € 9¢°(Vu(z)) a.e..
Given a function g € L2(IRY), we define

llgllp,% == sup{/lRN g(x)u(z) dx: u € L2(]RN) ﬁBV(RN)’ ¢°(Du) < 1}.

RN
Note that ||g||s, may be infinite. Let us recall the following result ([13, 45]).
Lemma 3.2. Let f € L2(IRN) and X\ > 0. The following assertions hold.

(a) the function u is the solution of

A
i D(w) := °(D - —)?%d )
wELZ’(BI’\Ifl)lr?BV(RN) (w) RN ¢°(Dw) + 2 /IRN (w—=f)" de (3:5)

if and only if there exists z € Xo(IRN) satisfying (3.4) such that ¢(z(z)) < 1 a.e. and divz =
Au — f).

(b) The function u =0 is the solution of (8.5) if and only if || s < %
(c) We have 0¥ 4(0) = {f € L>(R™) : || f|l4 < 1}.

Obviously, part (a) follows from Lemma 3.1 since 0¥ y(u) + A(u — f) > 0 is the Euler-Lagrange
equation for (3.5). Part (b) can be found in [13, 45], and it is easily deduced from (a). Part (c) follows
from (a) and (b), or as an immediate consequence of duality.

Definition 3.3. Let E be a bounded set of finite perimeter in IR™N. We say that E is ¢-calibrable if
there exists a vector field ¢ € L¥(IRN, RN) with ¢(£(x)) <1 a.e. such that (€,DXg) = ¢°(DXg) as
measures in RN, and

—divé = AgXg  in D'(IRY), (3.6)
for some constant Ag.

Notice that, a set of finite perimeter E is ¢-calibrable if and only if it exists Ag € IR such that

ABXp € 0% 4(Xp). Observe that if E is ¢-calibrable, then A\p = (7 := A}, Indeed, multiplying (3.6)

by Xz and integrating in IR" we obtain
MlE| = - [ divexwds= [ (6Dxp) = [ 6°(DXe) = Py(E).
RN RN RN

The following result was proved in [20, 18] (see also [13]). For the proof we refer to [2, Proposition
2] and we skip the details. Lemma 3.6 below is used in the proof of Proposition 3.4.
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Proposition 3.4. Let E be a bounded set of finite perimeter in IRY. Assume E to be conver. The
following assertions are equivalent

(i) E is ¢-calibrable;

(i) E minimizes the functional
P4(X) — Mgl X] (37)

among the sets of finite perimeter X C E.
For the proof of the following result we refer to [13, 9, 2].
Proposition 3.5. Let A > 0. The solution of
u — A~Ldiv (a¢°(Du)) —Xw, inRY (3.8)

. Ay
isu=(1- %) Xp,.

Finally, the following result can be proved as in [5].

Lemma 3.6. For any set of finite perimeter E in RN and any convez set C we have

Py(ENC) < Py(E). (3.9)

4 Properties of level sets of the solution of a variational problem

Proposition 4.1. Let C be a bounded convex domain in IRY. Let u € BV(IRY) N L2(IRYN) be the
solution of the variational problem

(@) uEBV(]RmNi)lrleQ(IRN) { RN ¢"(Du) + %/IRN (u—Xc)? dw} ) (41)
Then 0 <u < 1. Let Es :={u > s}, s € (0,1]. Then E; C C, and, for any s € (0,1], we have
Py(By) = (1 — 8)|Ey| < Py(F) = A(1—s)|F|  VFCC. (4.2)
Proof. Recall that u satisfies the following partial differential equation
u— A"div (0¢°(Du)) = X¢  in RN. (4.3)

Let = = min(u,0). Multiplying (4.3) by ©~ and integrating by parts, we deduce that = = 0. Similarly,
multiplying (4.3) by (u — 1)T we deduce that u < 1. Let us prove that u = 0 outside C. Let H be
a half-plane containing C. Since X¢ < Xp, and v = Xy is the solution of (4.3) with right-hand side
equal to v (indeed it suffices to take z(xz) = n € 9¢°(v), v being the euclidean unit normal to H
pointing towards H), by the comparison principle proved in [25] (see also [13]) we have that u < Xg.
This implies that © = 0 outside C, hence E; C C for all s € (0,1].

Let F C C be a set of finite perimeter. By the proof of Lemma 5.1 in [25] (see also Lemma 4 in
[15]), we have that (z, DXpg,) = ¢°(DXg,) for almost all s € (0,1]. Hence, for such an s € (0,1], we
have

—/ divz (Xp — Xp.)dz = / (Z,DxF)—/ (2, DXp.)
IRN RN RN

_ /IRN (2, DXF) — Py(E,) < P4(F) — Py(E,)
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and we deduce

P¢(F)—P¢(Es) Z )\ RN(X()—U)(XF—XES)

= A ((Xc—s)+ (s —u)(XF — XE,).
RN

Since (s —u)(Xp — Xg,) > 0 we have

Po(F) = Po(F) > A [ (Xe = 9)(tr = Xg.) = A(1 = 9)(F| = ).

Since all sets E; are contained in C' and Py is lower semicontinuous in the L'-topology, we deduce that
(4.2) holds for any s € (0,1]. O

Lemma 4.2. Let C be a bounded convex domain in IRY. Let uy be the solution of (Q)x, A > 0.
(i) ux # Xc for any A > 0.
(ii) uy — Xc in L2(RN) as A — .

(iii) Assume that C satisfies the RWy-condition, for some R > 0. Then for any X\ > 0, we have

N +
U)\Z 1—5 XC.

. . . 1
(iv) uy # 0 if and only if X > el

(v) Assume that C is not ¢-calibrable (i.e. it does not exist a vector field z € L*®°(IRY, RY), ¢(z(z)) <
1 a.e. such that —divz = A?}Xc). For any X > m uy cannot be a multiple of X¢o. Thus, for

any such X, there is some s € [0,1] such that {uy > s} # C.

Proof: (i) Suppose that there is A > 0 such that uy = X¢. Then, by Lemma 3.2 there is a vector field
2y € L®(IRN,IRY), ¢(zx(z)) < 1 a.e., such that (zy, DX¢) = ¢°(DX¢) and

divzy, = 0.

Multiplying this equation by X¢ and integrating in IRY, we obtain

0=-— divzy X¢gdz = / (z2x, DX¢) = ¢°(DXc) = Py(C).
IRN IRN IRN

This contradiction proves that uy # Xc¢.
(74) Since

#Ou)+y [ w-xePde< [ 6(Dxe) = PO,

RN RN RN

we deduce that 5
/ (ux — X¢)? dw < 3 Fo(©),
IRN

i.e. uy = Xc in L2(IRY) as A — co. Moreover, uy is bounded in BV (IRY).
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(iii) Let p € OC and let W), be the translation of RWy which osculates from inside 0C at p. Let us
compare uy with the solution u, of

u— A"div (8¢°(Du)) = Xw,.

Since X, < X¢, by the comparison principle [13] we deduce that u, < uy. The solution u, is given
explicitly by

But

Wo T W, TR Wy R+ R

N +
Up = 1—5 XWP'

Since this is true for any p € 9C, and also for any p in the interior of C', we deduce that

N +
U)\Z 1_ﬂ Xc.

Hence

(tv) By Lemma 3.2, we know that u) is characterized by the equation
uy — A Mdivzy = Xo

where z, € L®(RY,RY), ¢(zx(z)) < 1 a.e., with (z), Duy) = ¢°(Duy). Thus uy = 0 if and only if
—divzy, = A\X¢, i.e. if and only if [[AX¢||g« < 1.
(v) Suppose that for some A > m, we have u, = c)\X¢ for some constant 0 < ¢, < 1. Observe
that, by (7) and (iv), we have c) € (0,1). Then

—divzy = A1 —cy)Xe

Since (zy, Duy) = ¢°(Duy), and ¢y > 0, we have that (2x, DX¢) = ¢°(DX¢) = Py(C). Multiplying the
equation by X¢ and integrating by parts we deduce

)\(1 — C)\) = )\0.

Hence
—div z) = A\¢Xg,

and therefore C is ¢-calibrable, a contradiction. The final assertion is a simple consequence of the first
one. ]

Lemma 4.3. Let C be a bounded convex domain in IRY . For any \ > 0, let us consider the problem

(Plaz min Py(F) = AIF| (4.4)

Then
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(i) Let Cy,C, be minimizers of (P)x and (P),, respectively. If A < p, then Cy C C,.
(it) Let p > X. Assume that C is a minimizer of (P)x. Then C is also the unique minimizer of (P),,.

(i) Let A, T X. Then CY :=J,, C», is a minimizer of (P)x. Moreover Py(C,,) = P4(CY). Similarly,
if An L A, then CF) := (), Cy, is a minimizer of (P)y, and P4(Cy,) = P,(CY).
(iv) Assume that C satisfies the RWg-condition, for some R > 0. Then C is a minimizer of (P)y for
A
any A > %.

Proof. The proof is similar to the proof of Lemma 4 in [15] and we only give the proof of (iv).

Ay Ay
Let 7 > —% and take 0 < s, <1 — &%

By (1), it suffices to prove that C' is a solution of (P) o

’\% /R’

Ay
such that 7(1 — s,) | —z%. We observe that, by Lemma 4.2 (iii), we have {u; > s,} = C and, by
Proposition 4.1, C' is a minimizer of

Py(F) — (1 — s0)|F. (4.5)
Now, by assertion (7i7) in the present Lemma, we deduce that C' is also a minimizer of

My
Py(F) - 2P| (4.6)

O

Remark 4.4. In Proposition 4.1 we have proved that for any s € (0,1], the level set {u) > s} is a
minimizer of (P) ). Moreover, by Lemma 4.3, the sets {uy > s}¥ := [J 5 o{ur > s+e}, s € [0,1), and
{ux > s} := Nesofun > s —€}, s € (0,1], are also minimizers of (P)y_) (obviously {uy > 1}¥ =0 is
also a minimizer of (P)g). Notice that, except on countably many values of s, they both coincide with
{uy > s}.

5 The concavity of solutions of (Q),
Our purpose is to prove the following result.

Theorem 5.1. Let C be a bounded convex domain in IRYN satisfying the RWgy-condition, for some
R>0. Ifx> %, then the solution uy of (Q)x is concave in C. In particular {uy > s} is convex for
any s € [0,1].

Before going into the proof, we observe that, being concave in C, u) is continuous in C'. In particular
{uy > s} = {uy > s} and {uy > s}” = {uy > s}, and {uy > s} = {u) > s} (modulo a null set) for
any s € (0, max(uy)).-

The result is a consequence of Korevaar’s concavity result [41]. First we need to recall some ap-
proximation results which reduce the proof of Theorem 5.1 to the case of a smooth anisotropy.
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5.1 The approximation of a generic anisotropy ¢ with smooth ones

The following result is proved in [51, Theorem 3.3.1 and p. 111].

Theorem 5.2. Let € > 0 and let 1 : [0,00) — [0,00) be a function of class C*° with support in [5, €]
and with [y n(|z]) de = 1. If ¢° : RN — [0,+00) is an anisotropy, then the function ¢° defined by

PO = [ oErlemhan e R (5.1

is an anisotropy of class C®°(IRN \ {0}). _
Similarly, given a convez body K, define the map K — T (K) as follows: taking hx (§) := [~ hi(E+

1€12)n(|2|) dz for any € € RN, Then hi is the support function hy(xy of T(K). The map T has the
following properties: if K1 and Ko are two convez bodies, then

(a) T(K1+ K3) = T(Ky) + T(K2) and T (aKy) = oT (K1) for any o > 0;
(b) if K1 is contained in By, then dy(K1,T(K1)) < Re;

(¢) du(T (K1), T(K2)) < (1+ €)dn(K1, Ka);

(d) T(K1) + Be is of class C°.

Theorem 5.2 provides a way to approximate at the same time a generic anisotropy with C%°
anisotropies and a convex set with C{° convex sets. Indeed, the following result holds [15].

Lemma 5.3. Let ¢ be an anisotropy, and let C be a convezx body in IRYN. Then there exist a sequence
{d¢} of anisotropies and a sequence {C¢} of compact convez sets satisfying the following properties:

(i) {pe} converges to ¢ uniformly on RYN as e — 0;
(i) {C¢} converges to C in the Hausdorff distance as € — 0;
(iii) e, ¢7 € C and C; is of class C for any € > 0;
(iv) if C satisfies the rWgy-condition, r > 0, then C satisfies the rWy,_-condition for any € > 0.

Proof. Let 7 be the map defined in Theorem 5.2. Let ¢, be the anisotropy such that Wy, =
T (Wg) + Be; then ¢ € C3° by (d) of Theorem 5.2, hence also ¢ € C3° by (a) of Remark 2.3. Then (b)
of Theorem 5.2 yields (i). Let C, := T(C) + Bye. It is clear that (ii) is satisfied. From Theorem 5.2.d
we have that C¢ is of class C°. Assume that C satisfies the rWy-condition, thus there exists C' C C
such that C = C' + rWy. By (a) in Theorem 5.2 we have

Ce = T(C)+ Bre=T(C") +1rT(Wsy) + Bre
= T(C") +r(TWy) + B) =T(C') +rWy,,

hence (iv) follows. U
Observe that

@) = sup  wx-E= sup sup (y+2)-€ = °(€) + el (5.2)

€T (Wy)+Be yeT(Wy) 2€Be

We also observe that, from (5.1) we get
[6°(6) = ¢° () < elé]  VE e RN (5.3)
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5.2 The Dirichlet problem

Let © be an open bounded subset of IR with boundary of class C!, let h € L'(99), and let Uy, :
L?(2) — (—o00,+00] be the functional defined by

/¢ (Du) + /‘| —h|g° (W dHNTY if we L2(Q)NBV(Q)

Uo,n(u) := (5.4)

+o0 if uweL2(Q)\BV(Q).

The functional g4 j is convex and lower semicontinuous in L?(€2), hence 0V 4 p is a maximal monotone
operator in L?(f2). Let us recall the characterization of 9 .

Proposition 5.4. The following conditions are equivalent
(7,) v E B\I/¢’h(u),'
(ii) u,v € L*(Q), u € BV(Q) and there exists z € X2(Q) with qb(z(ac)) <1 a.e.,v=—div(z) in D'(Q)
such that (z, Du) = ¢°(Du) and [z - V%] € sign(h — u)¢° (v (z)) HV! a.e. on 0.

Proof. In the case h = 0, which is the case we need below, the result follows as in [9, Proposition 1.10],
since Wy o is positively homogeneous of degree 1. The general case is contained in [47]. Since we need
some intermediate results, we shall sketch a direct proof of it.

Assume first that ¢ is a smooth anisotropy and fix € > 0. Let

./ é+¢%Dmﬂ+/\u—mw@%dﬂNlifueL%mvam)
Q onN

TG, (u) = (5.5)

+00 if uweL?(Q)\BV(Q).

By [9, Theorem 6.7] (see also [43, 7, 47]) we know that 9¥j , is a maximal monotone operator which
can be characterized as Proposition 5.4. Since, as ¢ — 0, the solutions of

u+ A0VG ,(u) 3 f,

where f € L?(Q2) converge to the solution of u + A0 ,(u) > f, the thesis follows.
The case of a general anisotropy also follows by approximating it with smooth ones. O
The following comparison principle can be easily deduced by an integration by parts.

Proposition 5.5. Let f; € L?(Q), h; € L' (09), i = 1,2. Assume that fi < fo and hy < hy. Let u;,
1 =1,2, be the solution of
u + )\8\1/(1,,}“ (u) S fi. (56)

Then u; < us.

The same result also holds for 95 ; ([9, Theorem 6.14], [47]).
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5.3 Some technical results
We recall two auxiliary results. The following theorem was proved in [41].

Theorem 5.6. Assume that ¢ € C° and Wy is strictly convex. Let () be a strictly conver bounded
domain in RYN of class C1''. Let b: IR x RN — IR be such that

ob 0%b
2 77 >0.
ou 0 ou? — 0
Assume that u € C(Q) N C?(Q) satisfies
(—T (Dv) ) = b(u, Du)
1+ ¢°(Du)?

and the graph of u is a C' surface above Q having zero contact angle with 0Q x IR, i.e.
T°(Du o
IO e )

1+ ¢°(Du)

Then u is a concave function.

The sense of the boundary condition (5.7) will be made precise during the proof of Theorem 5.1.
Let us recall the following result which was proved in [2] using the results by Atkinson and Peletier in
[11].

Lemma 5.7. Assume that A > %, R > 0. Then there is a radius R < R and a radial solution
ug(x) = Ug(|z]) of

D .
u ):1 in B =B(0,R)

V€ + |Dul? (5.8)

u=20 on OB,

u—A*&v(

such that 5
0>U;§(r) >—00, U<Ug(r)<y for0<r<R

Ug(r) = —oo, Ug(r)=U asr? R,

for some wvalues v > 0, U > 0. Henceug > U >0 on B, and has zero contact angle with 0B x IR. In

particular, we have
Dug B

_— -V
€2+ [Dupl?

Let us recall that the solution ug(x) = Ug(|x|) of (5.8) can be characterized as a minimizer of

= € U u) dx U N-1 .
Se(u).—/B\/2+|D |2+>\/BF()d +/a[a||dH (5.9)

and Up(r) can be characterized as a minimizer of

= —1 =sign(-ug) on dB.

R R
Eer (V) := / Ve2 +o2sV1 ds+)\/ F(v)sNtds + RN Lu(R)|. (5.10)
0 0
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Lemma 5.8. Assume that ¢ € C°. Let uy be the solution of (5.8) given by Lemma 5.7. Let uy, () =
Ug(o(x)), = € W := RWy. Then ug, 45 a solution of

- A"div ( QTO(IZU) )=1  in W=RW,
€2 + ¢°(Du) (5.11)

u=20 on OW.
Before going into the proof let us make the following observation. If ¢ is an smooth anisotropy,

then Vo(x) = Z/ZV¢ (x) = % on OWy Where v(z) the euclidean unit normal to Wy, since ¢(x) =

dy(z,0W,) — 1. We also have |Vo(z)| = (V(I))

Proof. Let us write F'(u) = 2(u—1)2. Recall that uy, is a solution of (5.11) if and only if is a minimizer

of
/ V€2 + ¢°(Du)? +>\/ d:c+/~ |u|¢° (W (z)) dHN L. (5.12)
oW
Let w € WH(W). Then
LV, °(Vw)* = g € °(Vw(z w S
/v'v ¢+ 7 (Vo) _/o {¢>=s}\/2+¢(V (@) V()| ¢
dHN " (y)
Vo(y)|

N M ! € °(Vw(sy))2sV1ds
- /{¢—1} IVé(y)l /0 Ve +6°(Vu(sy)) d

Let wy(s) = w(sy), ¢(y) = 1. Since wy(s) = yVw(sy) < ¢°(Vw(sy)) for any y € {¢ = 1}, we obtain

/ 62+¢°(Vw)2>/ dH / ,/€2+\w )|2sN L ds
W = Jip=1y IVOW)|

In a similar way we have

= w § wy(s))sV~tds
JyFwde= [ Sogt [, P

and, using that |Vo(z)| = |vs(z)| = m, we have

o/, OW N—-1 _ pN-1 dHN~ 1( )w
/3W|u|¢ W (@) dHV = R /w Rl

Since Up is a minimizer of &, by the above inequalities, we have

Nl
£(w) 2/ d?‘w /,/ Tl () 25V ds
fo=1)

L—LN 1() f wy(s))sN 1 ds
" /{M 2 [ ()5 a

sV 1ds

R
- / VET F (Nl
0o Jig=1)

IVé(y)

— dHN1 .
O I L]
{¢=1}

- [ W )
- /{¢=1} |V¢(y)‘ Eer y)Z/{¢:1} |V¢(y)| ger(UB).
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Now, observe that Vuy, (z) = Up(¢(x))V(x), hence ¢°(Vuyy, (z)) = [Us(¢(2))|¢° (Vé(z)) = [U(¢(z))l.

With the same computations as above we obtain

N dHN " (y) )
£l = f om0 )

and we deduce that

E(w) > &(ugy)
for any w € W1H1(W). This implies that uyj, is a minimizer of £, hence, a solution of (5.11). O

Theorem 5.9. Assume that ¢ € C°. Let C be a bounded conver domain in RY satisfying the RWy-
condition, for some R > 0. Let \ > %. Let us consider the following problem

in C

T°(Du) ) _

u—A*ﬁv(
€2 + ¢°(Du)?

(5.13)
u=~0 on OC.

Then, there is a unique solution u® of (5.13) such that 0 < u® < 1. Moreover u® > a > 0 in a
neighborhood of OC for some o > 0. Hence, u satisfies

T°(Duf
[ (Du’) -IJC] = sign(—u€)¢°(v®) = —¢°(v®) on AC. (5.14)
€2 + ¢°(Duf)?
Proof. Existence and uniqueness of a solution u® of (5.13) satisfying the Dirichlet boundary condition
in the generalized sense follows by the results in [8, 43]. Multiplying (5.13) by test functions as in the
proof of Proposition 4.1 and integrating by parts we deduce that 0 < u® < 1.

Let us prove that u¢ > « > 0 for some a > 0. For that we shall use Lemmata 5.7 and 5.8. Recall
that at each point p € 9C, there is a ball W), of radius R < R such that W, C C and p € OW). Since the
solution u€ of (5.13) in C satisfies u¢ > 0 in W), by applying the comparison principle for the problem
(5.11) in W, instead of W (see Section 5.2) we deduce that u¢ > uw, > U. Since this is true for all
balls W), we deduce that 4 > U on a neighborhood of dC. Finally, by Proposition 5.4 in Section 5.2
we get (5.14). O

5.4 The proof of Theorem 5.1

Let ¢ be any anisotropy, and assume that C satisfies the RWy-condition. Let ¢5 € C°, Cs be the
regularization of ¢ and C given by Lemma 5.3. We know that Cj satisfies the RWy;-condition, hence
is Lipschitz ¢s-regular by Remark 2.9 (b). By Theorem 5.9, for any A > % there is a solution u€ of

T, (Du

u—Aﬂmv( 2%& )2):1 in  Cs

4/ € +¢6(D’U/) (5.15)
u=20 on 0Cy.

Let v°(z) = u°(£). We know that v(z) is a solution of
) Ty (Do) .
7 A A1 —p) =

div ( Hrd)g(m)2)+€(1 v)=0 in €Cs (5.16)
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satisfying

[ T;& (D’UE) )
/14 (Z)S(DUE)Q
Moreover, by the results of Korevaar and Simon [42, Theorems 2,3 and Section 3] (see also [52]), since
Cj is a bounded convex domain of class C™, we have that v¢ € C?(eC;)NC(eCs). Indeed, by the results
in [42] (Theorems 2,3 and Section 3), there is a solution w® € C?(eCs) N C(eCy) of (5.16) satisfying

T2 (Dw€)

¢s

1463 (Dwe)?
function on the graph of w*) and (5.17) holds. Since the solution of (5.16)-(5.17) is unique ([8],[43]),
we have that w® = v¢. Hence v¢ € C?(eCs) N C(eCy).

From Korevaar’s Theorem 5.6 ([41]), we then deduce that v is concave, hence also u® is concave.
Since, as € — 0, u converges to the solution ws of

nys]:sign(—v%g(yfca):—qsg(ufcs) on  9(C). (5.17)

the boundary condition in a classical sense, that is, € C(eCys) (even more, is a Lipschitz

u — A~Ldiv (a¢g(Du)) -1 in G
(5.18)
u =70 on 0Cj

we deduce that ws is also concave. Moreover, from Theorem 5.9 and Lemma 5.7 we also know that
wg > B > 0 (which comes also by a comparison with balls). Thus the vector field &5 satisfies ¢g(&s5(x)) <
1 ae., (&, Dws) = ¢3(Dws), ws — A~ 1divés = 1 on Cy, and [€5 - v98] = —¢3(v©5). Hence, if we define
wg = 0 outside Cj (see Remark 2.11), we have that ws is a solution of

u— A Ldiv (aqsg(Du)) =X¢, in RV (5.19)
Finally, letting 6 — 0%, we have that w; converges in L?(IRN) to a solution w) of
u—A"ldiv (9¢°(Du)) =X i RY, (5.20)

which is concave in C. Hence w) = u). We conclude that u, is concave in C. The Theorem is
proved. O

6 A partial result on the convexity of the minima of the anisotropic
perimeter with fixed volume
As in [2], using Lemma 4.3 and Theorem 5.1 we prove the following result.

Proposition 6.1. Assume that C is a bounded convex domain in IRY satisfying the RWgy-condition,
R > 0. For a >0, let uy be the solution of (Q)q. Let o, > %.

(i) If A > a(l—||uallco), then problem (P)y has a unique solution. Moreover, the solution is a convez
set.

(ii) We have a(l — |[ualloo) = B(1 — ||ugllco). Let X* denote this common value.
(iit) We have {uq > |ualloo} = {ug = |lugllco}, and

3+ = Pol{ta 2 [Juallo})
Hua > llualloo}|

As a consequence, we obtain that the set {ug > ||ua|loo} s ¢-calibrable.

(6.1)
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Let us denote the ¢-calibrable set {u, > ||uq|loo} constructed in Proposition 6.1 by K. Then
)\?} = \* and K minimizes

in Py(F) — A\ |F|. 6.2

min Py(F) = M| (6.2)

Now, extending the usual concept in the euclidean case, let us call the Cheeger ¢-constant of C the
quantity

h(C) := min Py (F) (6.3)

- Fcc |F|
In a similar was as in the euclidean case, we call a Cheeger ¢-set of C any set G which minimizes (6.3).
Notice that for any Cheeger ¢-set G of C, )\g = hy(C). Observe that G is a Cheeger ¢-set of C' if and
only if G minimizes

: _\¢
min Py(F) — Ag|F. (6.4)

In particular, if G is a Cheeger ¢-set of C' which is convex, then G is ¢-calibrable. Thus, C' is a

Cheeger ¢-set of C if and only if C is ¢-calibrable. On the other hand, we have that K is a Cheeger

¢-set of C. Moreover, if G is any other Cheeger ¢-set of C, then it minimizes (6.4), and using that

)\% = )\g = hy(C) we have that G C C) for any A > X;}. By Lemma 4.3, this implies that G C C)

for any X > )\f}. Since K =N, s Cy, we have that G C K. In other words, K is the largest Cheeger
K

¢-set of C.

Remark 6.2. In the euclidean case, a convex set C C IR? is a Cheeger set of C if and only if
maxgege ko(z) < Ao == %. This has been proved in [36, 13, 40] (see also [1]) though it was stated
in terms of calibrability in [13, 1]. This result was extended to any dimension in [2] by replacing the
curvature of the boundary by the sum of principal curvatures. Moreover, when C' C IR? is convex, the
convexity and uniqueness of the Cheeger set of C' was proved in [40] (see also [39]) and can be deduced
from the results in [1, 2] which were stated in terms of calibrable sets. As far as we know, for convex

sets C C IR", the uniqueness and convexity of Cheeger ¢-sets of C is still an open question [40].

Observe that the empty set is also a solution of (6.2). Collecting the above results and using Lemma
4.3 we obtain the following Theorem.

Theorem 6.3. Let C be a bounded conver domain in RN satisfying the RWg-condition, for some
R > 0. Then there is a set K C C which is the largest Cheeger ¢-set of C. Moreover, K is convex and
minimizes
in Py(F) — Ao |F :
min s (F') — Ak | F, (6.5)

thus K is ¢-calibrable. For any \ # )\?}, A > 0, there is a unique minimizer Cy of (P)y, which is
convez, and the function X — C) is increasing and continuous (hence also the function X — Py(C)) is

increasing and continuous). Moreover, C\ = 0 for all X € (O,)\?}).

Let us state without proof the following observation.

Lemma 6.4. Let C be a bounded convex subset of RN. Let y > 0 and let E be a solution of the
variational problem

;nglgPMF) — | F. (6.6)

Let V = |E|. Then E is a solution of
i Py(F). 6.7
pelin_, s (F) (6.7)
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Theorem 6.5. Let C be a bounded convex domain in IR" satisfying the RWgy-condition for some R > 0.
For any V € [|K|,|C|] there is a unique convez solution of the constrained isoperimetric problem (6.7).

Proof. Any solution of (6.7) corresponding to a value V' € [| K|, |C|] coincides with the solution obtained
from the corresponding problem (P), for some \ € [X;}, 00). Indeed, if V € [|K]|,|C|], there is a value
of X € [)\?}, o0) such that, if C) is the minimum of (P),, then |C)| = V. By Lemma 6.4 we know that
C, is a solution of (6.7). Now, let Q be another solution of (6.7). We have that P4(Q) = P4(C)), and
|Q| = |Cy|. Hence

Py(Q) = AlQ| = P(Cy) = A Cy| < Py(F) = A|F|

for any F' C C. Thus, @ is a minimum of (P),, hence @ = C). O

Remark 6.6. Thanks to Lemma 6.4 and Proposition 4.1, the algorithm described in [26, 27], permits
to compute the solution of (6.7) for any V' € [| K], |C|].

7 A characterization of a class of convex ¢-calibrable sets by its
anisotropic mean curvature

Proposition 7.1. Let C be a bounded convex subset of RN which satisfies the RWgy-condition for some
R > 0. Let pup — p. Let Cp be a minimizer of (P),, . Assume that Cy is a sequence of convex sets

converging to C, and Cy, # C. Then p < (N — 1)||H<g||oo

Proof. Let N € Nory(U, IR") be the vector field 7 given by Theorem 2.12 applied to the set C, where
U:= {|dg| < 0} for some ¢ > 0. We know that N € T°(Vdg) a.e. in U.

Assume by contradiction that (N — 1)|H& s < p. We may assume that § > 0 is small enough so
that ||div N||gec(ry < p. Then, for n large enough, we may also assume that ||div N||pe ) < pn and
C,, CU. Now, we integrate divN on C'\ C;,. We have

1€\ Cl >/ div N d
c\c

= / N-quHN—l—/ N . pCn guN-1
8C\dCh, aCn\8C

HN 1 of. Cn dHN_l
z /3‘0\(90 ¢ (V ) /BC' \8C¢ (V )

:/¢ HN1/¢ ) dHN

= — Py(Cr).
Hence
P¢(C) - /‘n|c| < P¢(Cn) - Un‘cnl'
This contradiction proves that u < (N — 1)||Hg.||c>o O

Theorem 7.2. Let C C RN be a bounded convexr domain of class C* and ¢ € C¥. If E is the
minimizer of (P)y, with A > )\(f(, then E is of class CbL.
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Proof. Observe that, by Remark 2.3 (a), ¢° € C°. By the regularity results in [42], 0E' N C' is smooth.
Following the ideas in [53] we prove that OF € Cb! in some neighborhood of dC. Since E is convex
by Theorem 6.3, then near each point x € 0F N dC, we may represent both 0F N 9C as graphs of
functions v and 3, respectively, defined on an open set U’ C IRN~! containing z' where z = (z',%"),
y" € IR. We will assume u and 8 chosen in such a way that u > 8, u = 0 on OU’ and 8 < 0 on 9U".
Now select v € K :={w :U' - R:v > in U and v = 0 on 9U'}. For 0 < ¢ < 1, define u. on
U as u. = u+ (v —u). We will assume ¢ chosen small enough so that the graph of u. remains in
C. Select a point z € (OE) N C at which OF is regular. Then, there is a neighborhood of z where
the anisotropic mean curvature of OF is constant and in which we can represent OF as the graph of a
function w defined on some open set V' C IRY~! containing 2’ where z = (2, 2"). Note that we can
take the sets U’ and V' to be disjoint. Let ¢ € C§°(V') denote a function which satisfies

/IgodHN_l :/I(v—u) dHN ! (7.1)

and define w, = w — €p. The graphs of the functions u. and w, produce a perturbation of the set F,
say E.. Because of (7.1) we have that |E| = |E.|. Taking

Fe)= [ ¢°(Vue,-1)dH '+ [ ¢°(Vw,,—1)dH !,
U’ V!

the minimizing property of OF implies that F(0) < F(¢) for all small ¢ and therefore, F'(0) > 0. Thus,

V¢o(vua _]-) : V(U - U) dHN- — ngo(vw, _]_) Vo dH N1 >0
g v

Since w has constant anisotropic mean curvature K, we obtain

V¢ (Vw,—-1) - Vo=—-K | odHN ' =-K [ (v—u)dHN!
v’ v’ U’
and therefore

V¢ (Vu,—1)-V(w—u) > -K [ (v—u)dH" L.
u’ U’

Finally, applying a regularity result due to Brézis and Kinderlehrer [23], we conclude that u €
CHY(V) on any domain V with V C U". O

Theorem 7.3. Let C be a bounded convex domain RN which satisfies the RWy-condition for some
R>0. Let A := (N — 1)||H‘é||oo Let C,, be the solution of (P),, n > 0. Then C, = C if and only if
w> max()\‘g,A).

Proof. Assume that C is a solution of (P),, and let us prove that u > max()\‘é,A). First of all,
notice that P(C) — u|C| < Ps(0) — u|0] = 0, i.e. u > A&, If K denotes the g-calibrable set contained
in C defined by Theorem 6.3, then K = argminyP(X) — )\?}\X|, and we have P(C) — /\?(|C\ >
P(K) — Mg|K| = 0, that is, A&, > A\%..

The proof of y > A requires an approximation argument. Let ¢. € C° and C, € C° be the

anisotropies and convex sets satisfying (i), (i7), (%) in Lemma 5.3, in particular, they converge to ¢

and C respectively. We recall the construction: ¢, is the anisotropy such that Wy = T.(Wy) + B,

where 7. is given by Theorem 5.2, and C, := T¢(C) 4+ Bpg.. Let \;, := P"]éje), A = Pﬁ}gf), where
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K, is the largest ¢.-calibrable set contained in C, obtained in Theorem 6.3. As in the last paragraph,
we also deduce that A\G; > A% .

Using (5.2), (5.3) and the Lipschitz local continuity of ¢° we have that |¢g(£) — ¢°(€)| < 2e for any
¢ € RN, |¢| = 1. This implies that

[Py, (X) — Py(X)| < 2¢P(X) (7.2)

for any set of finite perimeter X C IR". Hence, since P,(C.) — P,(C) we deduce that Py, (C,) — Ps(C).
Since we also have that |C| — |C| [51], then A\ — /\‘é.

Let 6 > 0, from the last argument we know that p+ 6 > A; > A% . Now, we consider the problem

(Pucs s min Py (F) = (u+ )| F). (7.3)

Let D4 be a minimizer of (P), 4. By Theorem 6.3 we know that the minimum is unique and it is a
convex set.

Now, as the sets D, ; are uniformly bounded in €, by extracting a subsequence if necessary, we may
assume that D4 converge to a convex set Ds in the Hausdorff distance. Using (7.2) and the lower
semicontinuity of Py, we obtain that Dj is a minimizer of (P),4s. By applying (ii) of Lemma 4.3, we
obtain that Ds = C for every § > 0.

By Theorem 7.2, we know that D, s is of class C1'! and, as ¢, € C%°, from Remark 2.9 (a) (see also
[15, Remark 4 (a)]) it follows that D s is Lipschitz ¢.—regular. Hence, by Lemma 2.8 D, 5 satisfies the
TWs,.-condition for some 7 > 0. Let n.s be the Cahn-Hofmann vector field of D, 5. Now, by applying
the first variation formula for the perimeter Py, [21, 17], we deduce that (N — 1)H¢5€ , = divnes < ptd.

Let d g := df:"g. By [15, Theorem 4] we have that d. 5 € Cl’l({|de,5| < (u+6)71}) and

loc

p+6
1 — [des|(1 + 6)

0 <divnes < in |des| < (u+6)7h

By [15, Corollary 1], we know that D, s satisfies the (u + §) W, -condition. By the stability result
proved in [15, Lemma 2], we know that C satisfies the (u + §)"!Wy-condition. Moreover, we may

assume that nes — n and divnes — divn weakly* in LS ({|des| < (u +6)"'}). As in the proof of

Theorem 2.12 this implies that n € TO(Vdg) a.e. in {|dqc;| < (p+ 6)~1}. Moreover

u+0

0<divn ——————
1 — |dS|(p + 9)

in {|d§] < (u+8)7"}. (7.4)

By Theorem 2.12, there exists a vector field zZ € T° (Vdg) a.e. in {|dg\ < (p + ) '} which minimizes
(2.13) and such that

|div 2[| oo (17) < ||div 2|l oo (17, (7.5)
for any ¢ < (u + )™, where Uy := {|dg\ < t}. Using (7.4) and (7.5) we then get

(N = 1)[[HE[|oo < p + 0.

Letting § — 07, we obtain that (N — 1)||Hg||oo < .

Assume now that pu > max()\g., A), but C is not a minimizer of (P),. In particular, by Proposition
3.4 and Lemma 4.3 (i), C is not ¢-calibrable. We shall construct a sequence of sets E) # C each one
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Ay
. . . b 1 e
being a solution of (P)fA with gy — 3, 8 > p. Let A > max(—5=, i C||¢’*,u). By Lemma 4.2 (4i3), we

A
know that uy > (1 — %ﬁxc. Let us define

B :=1inf{y :uy > (1 — %)+Xc}.

I\
Obviously, we have ) < %, and
B

u,\Z(l \

) Xe- (7.6)
Case 8y < pu. Take s = 1 — &. Then, by Proposition 4.1, [uy > s] is a solution of (P)y1_s = (P)-
Finally we observe that {uy > s} = C. Thus C is a solution of (P),.
’\?;V ’\?}\) 1 B B .
Case ;1 < ) < —&*. For each X\ > max(—%%, m), take s) € (1 — 3,1 -3 4+ 2], ex > 0 being a
sequence converging to 0. Then
Br—ex <A1 =s3) < B

Let E) = {uy > sx}. Since A(1 — s)) < By, and by Lemma 4.2 (v), we know that u), is not constant,
by an appropriate choice of s, we may assume that FE\ # (), E) # C. By Lemma 4.2 (i7), choosing sy

sufficiently near 1 — ’BTA, i.e. €y sufficiently small, we have that F)y — C as A — oo. Without loss of
\¢

generality me may assume that 8y — 8 where y < 8 < %. If 8 = u, then A\(1 — s)) — p. Since E),

is a solution of (P)y(;_s,), then C' would be a solution of (P),, and this would conclude. Therefore we

A
may assume that y < 8 < %.

I
Summarizing, we proved that E) is a solution of (P),, with uy := A1 —s)) = g with y < g < %,
and F) 7é C,E,—C.
Moreover, since E) is an upper level set of uy and X can be taken > % (recall that A\ — o0), by
Theorem 5.1, we know that w) is concave, hence E is convex. By Proposition 7.1, we have that

B<(N-1)[Hglloo = A <,
and we obtain a contradiction. We have proved that C' minimizes (P),,. O

Corollary 7.4. Let C be a bounded convex domain in RN which satisfies the RWg-condition for some
R > 0. Then E = C is a solution of s

min Po(F) — /. (1)
if and only if (N — 1)||H¢é||w < )\g.

Remark 7.5. Corollary 7.4 extends to the anisotropic case the analogous results proved in [36, 13, 40]
when N = 2 and in [15] when N > 2. In terms of Cheeger sets, it characterizes those convex sets C
(satisfying the RWjy-condition for some R > 0) which are Cheeger ¢-sets in themselves.
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8 The evolution of a convex set by the minimizing anisotropic total
variation flow

8.1 The minimizing anisotropic total variation flow

We are interested in computing the solution of the minimizing anisotropic total variation flow

2—1: = div 0¢°(Du) in Qr := 10, T[xR", (8.1)
coupled with the initial condition
u(0) = up € L*(RY), (8.2)

when uy = X¢, C being a bounded convex domain in IR" satisfying a ball condition.

The following notion of strong solution is adapted from the notion of strong solution in the semigroup
sense [22] (see also [47, 9, 13]).

In the following definition, we denote by Ll (0,7;BV (IR")) the space of functions w : [0,7] —
BV (IRM) such that w € L' ((0,T) x IRY), the maps t € [0,T] = [~ 1 dDw(t) are measurable for

every ¢ € C}(IRN; IRN) and /OT |Dw(t)|(IRY) dt < oo.
Definition 8.1. A function u € C([0,T]; L*(IRYN)) is called a strong solution of (8.1) if
u € W2 (0,T; L*(RN)) N L, (0,T; BV (R™))
and there ezists z € L (10, T[xIRY; RN) with ¢(z(z)) <1 a.e. such that
w=divz inD (J0,T[xR")
and

/IR @, Du) = [ ¢*(Du) >0 ae. (8.:3)

RN

Theorem 8.2. Let ug € L2(IRY). Then there exists a unique strong solution in the semigroup sense u
of (8.1) in [0,T] for every T > 0. Moreover, if u and v are strong solutions of (8.1) corresponding to
the initial conditions ug,vy € L?(IRYN), then

Ju(t) — v(®) 2 < lluo — vollz for any ¢ > 0. (8.4)

8.2 The evolution of a convex ¢-calibrable set
Let Q be a set of finite perimeter in JR"Y. We shall say that the set Q decreases at constant speed ) if
u(t,z) := (1 — M)" Xq(x) (8.5)

is the strong solution of (8.1) with initial condition uy = Xq. It can be easily checked (see [13]) that €2
decreases at speed A if and only if the function v := X satisfies the equation

—div 9¢°(Du) = v, (8.6)
i.e. if and only if there exists a vector field ¢ € L>®(IR™; IR™) such that ¢(¢) < 1,

—div £ = v (8.7)
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and

/ (&, Dv) = ¢° (D). (8.8)
RN RN

In other words, the set decreases at constant speed if and only if it is ¢-calibrable. Using Theorem 7.3
we obtain a characterization of the convex sets which decrease at constant speed.

Theorem 8.3. Let C be a bounded convez subset of RN which satisfies the RWy-condition for some
R > 0. The following conditions are equivalent:

(i) C decreases at constant speed;
(1) C is ¢-calibrable;

(i) (N — 1)[[HE oo < N

8.3 The evolution of a bounded convex domain satisfying a ball condition

Let us assume that C' is a bounded convex domain in IR" satisfying the RWj-condition for some R > 0.
Let K be the largest ¢-calibrable set contained in C, as in Theorem 6.3. For each A > 0 let C)\ be the
solution of (P)y. By Theorems 6.3 and 7.3 we have that C = () for any A\ < )\?(, and C) = C for any
A> max()\g, (N — 1)||H‘g||oo) Following [12, 38, 2], and recalling the monotonicity of Cy, we define

—inf{A:z€C onzx €C
Hc(x)::{on{ v €Ch} OE%N\C. (8.9)

Observe that Hc < 0 on C, and He(z) = —X;} for all z € K.

Definition 8.4. Let H € L'(IRN) and let Fy be the functional defined as
Fp(X) = P¢(X) -I-/ H(x)dx,
X

for all X C RN of finite perimeter. Let E be a set of finite perimeter in RN. We say that H is a
¢—wvariational mean curvature of E if

Fu(E) < Fg(X) VX of finite perimeter in RY.
The following result can be proved arguing as in [12, 38].
Proposition 8.5. We have
(i) He is a ¢—variational mean curvature of C and [, Ho(z) dx = —Py(C).
(it) HcXc, is a ¢—variational mean curvature of Cy and fCA He(x) dr = —Py(Cl).

Lemma 8.6. We have ||Hcl|p« = 1. In particular, there ezists a vector field ¢ € L® (RN, RN), such
that ¢(éc) < 1 and divéc = He in RY . Moreover,

(&,DXc¢,) = ¢°(DX¢y) for any A > 0.
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Proof. Since Fg(C) = 0, we have — [ Ho(z)dz < Py(X) for any set X C IR of finite perimeter.
This inequality, as in the proof of Lemma 3.2, implies that ||Hc||4« < 1. Since [, Ho(x)dr = —Py(C),
we deduce that ||H¢||g« = 1. Hence, by Lemma 3.2 there exists a vector field £¢ such that ¢({c) <1
and divéc = Heg in IRV,

Now, multiplying divéc = He by X¢, and integrating on IRY, we obtain

- /IR (écy Décy) / He(z)dz = —Py(Cy) = / ¢*(DXcy)-

Since ¢(éc) < 1, we deduce that (¢, DX¢,) = ¢°(DXc, )-

Theorem 8.7. Let C be a bounded conver domain in IRY satisfying the RWy-condition for some R > 0,
and let He be the variational curvature of C defined by (8.9). Then, u(t,z) = (1 + He(x)t) X (z) is
the solution of (8.1) corresponding to the initial condition uy = X¢.

Proof. Let t > 0. We have u(t,z) = sign™ (14 H¢(z)t)He (z), where sign™ (14 He(z)t) = 1 if and only
ift < —ﬁ(@, otherwise sign* (1+ H¢(z)t) = 0. In particular, we observe that for ¢ > ||HLC||LOO(C) = )\%
K
we have u; = v = 0. Thus
u(t, ) = Ho(z)Xc, , () X[0,1) (1),

where T := )\%. Let £¢ be the vector field given by Lemma 8.6. We have
K

[c-vOs] = —¢°(v“1/s) on OC s,

for all s > 0. Arguing as in [13, 20], we now modify the vector field £ in such a way that its modification
£(t, z) satisfies £(t,2) € Xo(IRYN) and div(é(t,z)) = 0 in RN \ Cip Ut > i, we set £(t,z) :== 0. By

Lemma 8.6, we have (£(t), Du(t)) = ¢°(Du(t)) and

dlvé.( ) ( )XC1/t = Ut Vt € (OaT) :
By the characterization of ¥4 given in Lemma 3.1 and recalling Theorem 8.2, we get that u(t) is the
unique strong solution of (8.1), corresponding to the initial condition ug = X¢. O
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